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The Normal Curve
Also known as the Laplace-Gauss curve as in “this 

curve is Gaussian in nature”.
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Pierre Laplace

IF we can assume something has a 
normal distribution THEN knowing just 
the mean and standard deviation can tell 
us how someone‟s score compares with 
everyone else.

Normal Curve in Psychological tests

Scores on many psychological tests tend to 
be approximately normally distributed .

The larger the sample and the wider the 
range of things measured, the closer to a 
normal curve the distribution usually 
becomes.

Because the normal curve is mathematically 
defined, if we can assume something is 
normally distributed then it means we can 
do more sensitive (parametric) statistical 
tests on it.

If something is normally 

distributed we know:

1. Mean = median = mode therefore 50% of 
people are below/above the mean

2. 68% of scores +/- 1 s.d. around mean.

3. 95% of scores +/- 2 s.d. around mean.

4. Tails of distribution are 2 to 3 s.d. from the 
mean.

e.g. „Mentally retarded‟ has been defined as 
an I.Q. of below 2 s.d. below the mean 
(mean = 100, s.d. = 15, I.Q.<70). So -
„mentally retarded‟ is always in comparison 
with the rest of the population (it‟s not 
absolute). 

Standard scores

Raw scores can be converted into standard scores to make 
interpretation simpler. That is, we anchor the mean and 
standard deviation of the scale - and therefore we know 
what any particular score means without having to explain 
the original scale. We can also compare performance 
across different scales.

z scores - mean of 0 and s.d. of 1
So - z score of 1 = you‟re 1 s.d. above the mean

z score of -.9 = nearly 1 s.d. below the mean

z score of 1.4 = between 1 & 2 s.d. above mean

Xs

XX
z

z = z score

X = raw score

X = mean of raw scores

sx = s.d. of raw scores
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T scores - mean of 50 and s.d. of 10

• Avoids negative numbers (need < -5 s.d. to 
get negative) unlike z scores. To convert a z 
score into a T score, multiply by 10 and add 
50.

• T scores are used by the Minnesota 
Multiphasic Personality Inventory (MMPI) -
with some tweaking. Also used by the 
Stroop test.

Note that this sort of transformation DOES 
NOT change the shape of the distribution. 
It is a linear transformation .

IQ scores - mean of 100 and s.d. of 15

IQ - „deviation intelligence quotient‟

So - because IQ is normally distributed:

• IQ 100 = 50% smarter; 50% more stupid

• IQ 115 (+1 s.d.) = 16% smarter; 84% more stupid

• IQ 130 (+2 s.d.) = 2% smarter; 98% more stupid

• IQ 85 (-1 s.d.) = 84% smarter; 16% more stupid

• IQ 70 (-2 s.d.) = 98% smarter; 2% more stupid

Percentage chart for normal distribution

-3 s.d. -2 s.d. -1 s.d. Mean +1 s.d. +2 s.d. +3 s.d.

Z score -3 -2 -1 0 1 2 3

T score 20 30 40 50 60 70 80

IQ score 55 70 85 100 115 130 145

2.15% 13.59% 34.13% 34.13% 13.59% 2.15%

See Appendix of handout for a full conversion table.

Stanine scale

Used in school tests – 9 divisions, each .5 s.d. 
wide, with the middle band (5) from -.25 
to +.25 s.d.

For example, the Neale Analysis of Reading.

STA(ndard) NINE
4% 7% 12% 17% 20% 17% 12% 7% 4%

Stanine 1 2 3 4 5 6 7 8 9

s.d. -1.75 
to 

-2.25

-1.25 
to

-1.75

-.75 to 

-1.25

-.25 to

-.75

-.25 to 
+.25

+.25 
to 

+.75

+.75 
to 

+1.25

+1.25 
to 

+1.75

+1.75 
to 
+2.25

Note that this scale can be mapped straight onto all the 

others on the previous slide (normal distribution)

Reliability:

“The extent to which measurements are consistent or 
repeatable; also, the extent to which 
measurements differ from occasion to occasion as 
a function of measurement error” (Cohen and 
Swerdlik, 2002, page 660)

– Lower measurement error = higher reliability.

– In Classical Test Theory, reliability is true 
variance (hypothetical variation of scores in a 
sample if no measurement error) divided by total 
variance (actual variation in data - including 
error)

Internal consistency
How much the item scores in a test correlate with one 

another on average (e.g. Cronbach‟s alpha, KR-20, 
Kappa).

Test-retest reliability
If people sit the same test twice, how much do their 

scores correlate between the two sittings?

Alternate-forms reliability
If people do two different versions of the same test, how 

much do their scores on the two versions correlate?

Inter-rater reliability
If a test involves an examiner making a rating - get two of 

them to do the rating independently and see how much 
their ratings correlate.

We can ESTIMATE test reliability via:
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Different types of validity
(traditional taxonomy)

Content validity
(are items in test judged to

be representative of the
domain?)

Criterion-related validity
(test score correlated with other

measures of interest?)

Construct validity
(is the test judged to be
an adequate measure of
the theoretical construct
that it was supposed to

measure?)

Concurrent validity
(other measure of interest

measured AT THE SAME TIME
as the test)

Predictive validity
(other measure of interest
measured AFTER the test)

Face validity 
(how valid does a 
test intuitively 
APPEAR to be?)

Why is it important for both the test and
its criterion to have decent reliability?

Because the reliability of each limits the size of the 
validity coefficient (the correlation between test score 
and the criterion). That is:

– If the reliability of the test itself is low, then the validity 
coefficient may be lower than it should be.

– If the reliability of the criterion measure is low, then the 
validity coefficient may be lower than it should be.

“The validity coefficient is (always) less than or equal to the 
square root of the test‟s reliability coefficient multiplied by the 
square root of the criterion‟s reliability coefficient” (C&S, 
p.161)

Individual score interpretation

• In theory, if an individual repeatedly takes a test (losing 
their memory of the test after each go), then their scores 
will form a normal distribution.

• In Classical Test Theory, this distribution should be 
centered around their hypothetical „true‟ score.

• We can estimate the chance than someone‟s actual score 
in a test is close to their „true‟ score.

• The Standard Error of Measurement (SEM) is a statistic 
that tells you how much an individual‟s measured score is 
likely to deviate from their true score (low if high reliability, 
high if low reliability).

Standard Error of Measurement 
(SEM)

1 5 10 15 20 25 30

Hypothetical 
true score

SEM can be estimated using:

•Standard deviation of test-
takers‟ scores (sx)

•Reliability of test (rxx)

)1( xxx rsSEM

SEM (equivalent to 
standard deviation)

If we assume the normal distribution…
•68% of an individual‟s scores will be within 1 SEM of the true 
score (+/-1 standard deviation).

• 95% of an individual‟s scores will be within 2 SEMs of the 
true score (+/- 2 s.d.).

• 99.7% of an individual‟s scores will be within 3 SEMs of the 
true score (+/- 3 s.d.).

If someone‟s only taken a test once, then our best guess of 
the true score is their actual score.

On that assumption, we can estimate the likely margin of 
error in someone‟s score.

Confidence interval:
the range of scores that is likely to contain 

a person‟s true score (margin of error)
e.g. 95% confidence interval: 
+/- 2 s.d. (1.96 to be precise) 
with a normal distribution 
(95% of scores fall within 2 
s.d. of the „mean‟ which is 
their actual score).

Therefore the 95% 
confidence interval is 
the actual score +/-
(2 x the SEM).

EXAMPLE: the WAIS IQ test - reliability is .98; s.d. is 15;

so SEM is: = 2.12.

If someone gets an IQ score of 105, their 95% confidence 
interval is [105 +/- (2*2.12)] from 101 to 109 

(i.e. their true IQ score is 95% likely to be in that range).

)98.1(15
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Standard error of the difference (SEdiff)

Use this to work out whether someone‟s score is 
significantly different from:

1. Their score on another test of the same thing

2. Someone else‟s score on the same test

3. Someone else‟s score on another test.

For 2 tests, we first transform them to the same scale 
e.g. a z score. Then:

22 21 SEMSEMSEdiff

SEdiff = standard error of the 
difference

SEM1 & SEM2 = Standard error of 
mean for tests 1 & 2

• Or, alternatively:

212.. rrdsSEdiff

SEdiff = standard error of 
the difference

s.d. = standard deviation of 
test 1 = standard deviation 
of test 2 (because they‟ve 
been standardized)

r1 & r2 = reliability of tests 
1 & 2

If you‟re comparing two scores on the same test, 
then SEM1=SEM2 and r1=r2 & just put the numbers 
in the formula as before.

Standard error of the difference (SEdiff)

• To be 95% confident that two individual scores are 
different then they would have to differ by at least 2 
standard error of the differences (1.96 to be precise) -
because of the normal distribution.

• If the two scores differ by more than 2 SEdiff then we 
can say that they are significantly different at a 95% 
level of confidence.

• If the two scores differ by less than 2 SEdiff then we 
can say that they are not significantly different at a 
95% level of confidence.

Standard error of the difference 
between two scores - how to use it

• A man has been on a program of treatment for depression.

• Before the treatment he scored 134 on a test of depression and 
125 on the same test afterwards (high score, more depressed). 
How can you tell if this decrease in depression is down to 
chance or not?

• Reliability of the test is .92 and its standard deviation is 14 - so 
we calculate the standard error of the diff:

SEdiff = 14*sqrt(2-.92-.92) = 5.6

• The man‟s scores differ by 9 points which is 9/5.6 = 1.6 SEdiff. 
That‟s not enough to be 95% confident that they‟re different 
(the scores need to be 2 SEdiff apart) so we can‟t conclude the 
man is significantly less depressed after his treatment.

Standard error of the difference 

between two scores - an example

What if you expect scores to increase on 
repeated administrations of a test?

• Some tests are often applied more than once to the same 
person - and are associated with a practice effect. That is, 
you expect people to improve their scores even if the 
underlying trait being measured remains unchanged.

• So, if someone‟s score remains the same then this could 
actually indicate they have a problem.

• One way to address this is to re-standardise people‟s 
scores for their 2nd attempt against a sample of 2nd 
attempt scores (i.e. you correct for the expected 
improvement).

• Remember that any changes need to be significantly 
different to be considered meaningful - you‟ll always get 
some score fluctuation due to measurement error.

Evaluating diagnostic tests

Problem: Imagine a 55 year old man takes a 

test which indicates he has dementia. The 
probability of dementia is 1% in 55 year old 

men. If he has dementia, the probability is 
80% that the test will detect it. If he does 
not have dementia, the probability is 10% 

that the test will incorrectly indicate he has 
dementia. What is the probability that this 

man actually has dementia?
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Evaluating diagnostic tests

• We can answer this question using the following technique 
involving a 2x2 table:

Disorder 
present

Disorder 
absent

Test 
positive

Correct 
positives

False 
positives

Test 
negative

False 
negatives

Correct 
negatives

Sensitivity: % of people 

with disorder who test 

positive

Specificity: % of people 

WITHOUT the disorder 

who test negative

Pre-test probability: % of 

people in the population 

who have the disorder

Using 2x2 tables to evaluate tests:

• Problem: Imagine a 55 year old man takes a test which 
indicates he has dementia. The probability of dementia is 
1% in 55 year old men. If he has dementia, the probability 
is 80% that the test will detect it. If he does not have 
dementia, the probability is 10% that the test will 
incorrectly indicate he has dementia. What is the probability 
that this man actually has dementia?

So:

• Pre-test probability = .01

• Sensitivity (% correct positives) = .80

• Specificity (% correct negatives: 100%-10%) = .90.

1. Choose arbitrary 
number of people  
(100000) and put in 
grand total box.

2. Multiply Grand Total 
by Pre-test 
probability to get 
Total with disorder.

3. Grand total minus 
Total with disorder = 
Total without 
disorder.

4. Multiply Total with 
disease by Sensitivity 
to get Correct hits.

Disorder 
present

Disorder 
absent

Test 
positive

Correct 
positives

False 
positives

Total 
positive

Test 
negative

False 
neg.

Correct 
neg.

Total 
negative

Total 
with 
disorder

Total 
without 
disorder

Grand 
total

Using 2x2 tables to evaluate tests:
5. Multiply Total without 

disorder by Specificity 
to get Correct misses

6. Compute False 
positives and False 
negatives by 
subtracting Correct 
hits/Correct misses 
from column totals

7. Compute Total 
positive and Total 
negative by adding 
up rows

Disorder 
present

Disorder 
absent

Test 
positive

Correct 
positives

False 
positives

Total 
positive

Test 
negative

False 
neg.

Correct 
neg.

Total 
negative

Total 
with 
disorder

Total 
without 
disorder

Grand 
total

Using 2x2 tables to evaluate tests:

•Predictive value of a positive test is 
Correct positives ÷ Total positives.

•Predictive value of a negative test is 
Correct negatives ÷ Total negatives.

Example problem (old man with dementia):

Disorder 
present

Disorder 
absent

Test 
positive

800 9900 10700

Test 
negative

200 89100 89300

1000 99000 100000

•Pre-test probability = 
.01

•Sensitivity = .80

•Specificity = .90.

•Predictive value of 
positive test = 
800/10700 = .07

•Predictive value of 
negative test = 
89100/89300 = 1.00.

•So - what is the probability that this man actually has 
dementia given his positive test result? It‟s 7%.

Likelihood ratios

• The 2x2 table method could only deal with tests that 
give a dichotomous result (positive/negative).

• However, most tests give you more than two 
outcomes (e.g. a number on a scale). Different 
numbers could indicate different severities - so by 
just having pass/fail you‟re throwing away 
information.

• Also, if you‟re using multiple diagnostic tests, it‟s 
possible but pain-staking to calculate their combined 
value using 2x2 table method.

• Both these problems are solved if you use Likelihood 
Ratios instead (& calculations are simpler).
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• The post-test odds (i.e. chance of positive test being correct) 
equals the pre-test odds (i.e. prevalence in the population) 
multiplied by the likelihood ratio.

• That is – the likelihood ratio is the ratio between people with a 
positive test who have the disease and people with a positive 
test who don‟t have the disease.

• Likelihood Ratio = Sensitivity / (1 – Specificity)

• Note that likelihood ratio calculations deal in odds (e.g. 2 to 1) 
rather than probabilities (e.g. 0.66).

• Odds = probability/(1 - probability)

• Probability = odds/(1 + odds)

– Odds 3 (to 1) = .75 probability

– Odds 9 (to 1) = .90 probability

– Odds .5 (to 1) = .33 probability

Likelihood ratios
• So, if the likelihood ratio is 1 then the test has no 

predictive power (positive test doesn‟t tell you 
whether you‟ve got the disease or not).

• A likelihood ratio of 2 means that if you have the 
disease then you‟re twice as likely to test positive for 
the disease as someone who doesn‟t have the 
disease.

• A likelihood ratio of .5 means that if you have the 
disease you LESS likely (half as likely) to test positive 
than someone without the disease.

• The bigger the ratio, the better the test can tell apart 
people with and without the disease.

Likelihood ratios

• So - to solve our previous problem using likelihood 
ratios, we‟d convert pre-test probability into odds 
then multiply by the likelihood ratio for a positive test 
(then convert back to probabilities if we wanted).

• Pre-test probability = .01 (1%)

• Pre-test odds = .01/(1-.01) = 0.01 (to 1)

• Likelihood Ratio = Sensitivity / (1 – Specificity)

= .8/(1-.9) = 8

• Post-test odds = LR x Pre-test probability

= 8 x .01 = .08 (to 1)

• Post-test probability = .08/(1+.08) = .07 (7%)

Likelihood ratios

• In the literature, you might well see likelihood 
ratios given for a test (positive/negative) instead 
of sensitivity/specificity.

• For a tutorial on how to use Likelihood ratios for 
multiple tests and for more than 2 possible 
outcomes - see: gim.unmc.edu/dxtests/

Likelihood ratios

ROC curves
• The number of correct and false positive test 

results depends on (1) how accurate the test is 
but also (2) where you set the “pass mark” for 
the test (e.g. at what score are people labelled 
demented?).

• We may want to use different “pass marks” in 
different clinical situations depending on whether 
it‟s more important to minimise false positives or 
false negatives (or if you just want to maximize 
discrimination between groups). 

• A ROC curve is a plot of Correct positive rate 
versus False positive rate - where each point on 
the curve is a different “pass mark” for the test.

• Vertical line is 
“pass mark”.

• As we move the 
“pass mark” to 
the right, the true 
positives 
decrease but so 
do false positives 
- due to overlap 
in distributions 
(because the test 
isn‟t perfect).

ROC curves
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• This is the ROC 
curve for all 
possible “pass 
marks”.

• As true positive 
rate increases 
with a changed 
pass mark,  false 
positive rate 
does too.

ROC curves

• The more the 
line curves 
away from the 
diagonal, the 
better the test 
is at discrim-
inating people 
with disorder 
from controls.

• The area under 
the curve is the 
accuracy of the 
test.

ROC curves

A real example of using a ROC curve
• Sara Olsen‟s honours project with Gina Geffen: to 

find out whether adding a particular neuropsych test 
(nonword repetition) to an existing battery improves 
the chance of detecting concussion.

• Concussion group vs controls completed batteries 
within 24 hours of injury.

• Sara used a discriminant analysis (like a multiple 
regression but where the DV is discrete – concussion 
versus no concussion) to come up with the best 
linear combination of tests that could detect 
concussion (with and without the new test).

• She then calculated a composite score of all the 
tests (with and without the new test).

Using ROC curve data to find the „pass 

mark‟ for optimal discrimination of 
concussion vs no concussion

• Go to SPSS – graphs menu – ROC curve…

• Value of state variable: enter DV (e.g. concussion 
= 1 vs no concussion = 2)

• Test variable: enter composite test score from 
battery.

• Tick all boxes and check out „options‟ sub menu.

• Note you can choose how to calculate the area 
under the curve (2 options). Non-parametric is 
„safer‟.

• Cut and paste “co-ordinates of the curve” into Excel.

• Work out specificity (=1- (1-specificity)) for each row.

• Add together sensitivity & specificity for each row.

• Look to see where this sum is highest: that‟s your 
optimal pass mark (best discrimination) – read off 
sensitivity and specificity at that point.

• Repeat whole exercise with the new test in the 
battery.

• Go and work out your 2x2 tables (pre-test probability 
is % participants with concussion) – did adding the 
new test correctly classify more people? No…

Using ROC curve data to find the „pass 

mark‟ for optimal discrimination of 
concussion vs no concussion

• Rough guide to accuracy/discrimination between 
people with disorder and controls (area under 
ROC curve):

– .90-1.0 excellent

– .80-.90 good

– .70-.80 fair

– .60-.70 poor

– .50.-60 fail 

– (.50 is a straight diagonal which is chance, i.e. you are 
getting the same rate of correct positives as false 
positives so it‟s pointless to perform the test).

• See gim.unmc.edu/dxtests/ for further info.

ROC curves
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Signal Detection Theory

• ROC curves are one application of signal detection 
theory - which should also be used in scoring 
certain tests.

• Use it whenever you‟ve got a task that involves 
discriminating between stimuli:

• e.g. the recognition memory task in California 
Verbal Learning Test - have you seen this word 
previously or not? (YES or NO).

• If you use % correctly recalled as the score, 
people can maximise their score by saying they 
recognise every word.

• Four possible outcomes:

• Correct hit

• False positive/false alarm

• Correct miss

• False negative

• People have different criterion for how familiar a 
word has to feel before they say they recognise it.

• Liberal criterion - they‟ll say YES even if they only 
have a vague recollection (will get more correct).

• Conservative criterion - they‟ll say YES only if 
they‟re absolutely certain they remember it. 

Signal Detection Theory

• E.g. Older people are less likely to guess (conservative 
criterion) so they‟ll get a lower % correct BUT you don‟t know 
whether that‟s because their memory is actually worse or 
because of their response style from this % alone.

• That is, there‟s a confound between SENSITIVITY (ability to 
discriminate between words that you heard previously and 
those you didn‟t – not the same as sensitivity in the context of 
diagnostic tests) and RESPONSE BIAS (criterion for saying yes).

• You want to measure SENSITIVITY - but if you just look at 
correct hits then sensitivity is contaminated by RESPONSE 
BIAS.

• We can disentangle sensitivity and response bias by looking at 
false positives as well as correct hits.

Signal Detection Theory
• This is what signal detection theory does for us 

(we enter hit rate and false alarm rate into a 
formula and get out sensitivity and response bias 
as two separate scores).

• We can then use the sensitivity score (often called 
d prime or d‟) instead of hit rate as our raw score 
on the test.

• See the following for further info (including details 
of how to do this in SPSS, Excel etc) – this article is 
available free on the web (search on Google):

– Stanislaw, H., & Todorov, N. (1999). Calculation of signal 
detection theory measures. Behavior Research Methods, 
Instruments, & Computers, 31(1), 137-149.

Signal Detection Theory

POWER ANALYSIS & 
META ANALYSIS

PSYC7112 - EXTRAS

Power analysis should be done for 
any empirical project

• Traditionally psychologists use statistical significance 
as the benchmark for quantitative results.

• Significant results (5% level) are seen as describing 
effects that are important and substantial.

• Non-significant results are seen as either indicating 
trivially small effects or even no effect at all.

• This is wrong - but power analysis addresses this 
issue.

• These days, papers without power analysis are 
regularly rejected by journals as a matter of 
course.
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Sample size/effect size trade off

• Statistical significance just tells you the probability 
that something is due to chance.

• This depends on the magnitude of the effect and 
the sensitivity of the experiment (mainly how many 
people you‟ve tested).

• If you‟ve got a really big effect then it‟s easier to 
detect so you don‟t need so much sensitivity (i.e. 
you can get away with smaller samples).

• If you‟ve got a small effect then you‟ll need more 
sensitivity to detect it as statistically significant (i.e. 
you‟ll need to test a larger sample).

Power analysis

• Power analysis tells us how many people we need 
to detect a certain size of effect as significantly 
difference from zero.

• It‟s especially useful for interpreting non-significant 
results (very typical for student projects!).

• You can do it either by using very simple equations.

• Or by consulting tables (I‟ll email you a copy of 
Cohen 1992 which has these tables).

• Or by using free software downloadable from the 
internet.

Ideal world

• Before running any study, we predict what magnitude 
of effect we would consider “substantial”/worth 
knowing about in whatever domain we‟re looking at 
(e.g. see literature).

• Then we work out how many people we need to test 
to stand a decent chance (usually 80%) of finding 
such a effect size statistically significant.

• Then we design our study to test that many people.

• In practice, the number of people we test is 
constrained by logistic factors - but it‟s still worth 
knowing if you‟re setting yourself an impossible task 
or not.

Effect sizes
• If you‟re doing a study where you‟re looking at 

correlations, you can use the correlation coefficient 
itself as the effect size.

• Cohen defined small, medium, and large effect sizes 
to act as a rule of thumb.

• You traditionally square correlation coefficients to get 
a measure of what they actually mean in terms of % 
of the variance accounted for - though some argue r 
itself is a better estimate of this (e.g. Ozer, D. J. 
(1985). Correlation and the coefficient of 
determination. Psychological Bulletin, 97(2), 307-315).

• The less people you test, the greater the likely margin 
of error in the correlation coefficient you get out 
(likely to be further from the actual population 
correlation).

To give an 80% chance of detecting these 
correlations as significant at the 5% level, 
we need the following numbers of people:

Correlation (r) % of shared 
variance (r2)

Minimum number of 
people needed

„Large‟ .50 25% 28

„Medium‟ .30 9% 85

„Small‟ .10 1% 783

So - if you get a non-significant result, it could be 
because the correlation is non-existent or it could 
be that you haven‟t tested enough people.

Effect sizes - differences 
between 2 means (t-test)

• Consider an experiment with 2 groups where you 
want to see if there‟s a “substantial” difference 
between those two groups (say in reaction time).

• The effect size would be the difference in reaction 
time between the two groups (in whatever units 
you measure it in - e.g. milliseconds).

• BUT - it‟s more useful to standardise it.

• One standardised measure of effect size is Cohen‟s 
d (the difference between the groups measured in 
standard deviations).
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Cohen‟s d 
(s.d. 
between 
means)

% of group 1 
lower/higher than 
the average of  
group 2

Minimum number 
of people needed 
IN EACH GROUP

„Large‟ .80 79% 26

„Medium‟ .50 69% 64

„Small‟ .20 58% 393

To give an 80% chance of detecting these 
differences between 2 groups as significant 

at the 5% level, we need the following 
numbers of people:

Medium effect size = “apparent to an intelligent 

viewer” = the difference in heights between men and 

women at age 18.

Special treat for PSYC7112  students:
Cohen‟s d calculator

• I‟ll email you an Excel file I‟ve written that 
calculates Cohen‟s d when given the means, 
standard deviations, and group sizes of 2 groups.

• Enter the data into the columns – Cohen‟s d (and 
the pooled standard deviation) should appear.

What do different Cohen d sizes 
actually look like?

• Males (1) versus females (2) – video speed test (miles 
per hour compared with car in video).

• Large effect size: Cohen‟s d = .8
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What do different Cohen d sizes 
actually look like?

• Males (1) versus females (2) – „I enjoy driving‟

• Medium effect size: Cohen‟s d = .5
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What do different Cohen d sizes 
actually look like?

• Males (1) versus females (2) – „How often do you 
drive fast?‟

• Smallish effect size: Cohen‟s d = .25
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• So - if we expect only a trivially small or zero 
correlation between two variables then I just need 
to test enough people to give a good chance
(say, 80%) to detect a medium-sized 
correlation (where I argue that a smaller 
correlation than this is trivial/unimportant in the 
circumstances - whether it‟s due to chance or 
not).

• THEN if our correlation does indeed turn out to be 
non-significant, we can say, “despite having 
enough people to stand a good chance of 
detecting a medium correlation, the correlation 
was not significant.”

POWER ANALYSIS
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“There was no significant difference between the 

mean biases of experts and novices, t(78) = -.149, p

= .882, Cohen’s d = 0.03. Power analysis revealed 

that in order for an effect of this size to be detected 

(80% chance) as significant at the 5% level, a 

sample of 34886 participants would be required.”
Taken from results section of Waylen, Horswill, Alexander, & McKenna 

(2004), “Do expert drivers have a reduced illusion of superiority?”

See this article for further information: Cohen, J. (1992). A 

power primer. Psychological Bulletin, 112(1), 155-159.

See here for a free power analysis guide and software: 
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

POWER ANALYSIS G*Power 3 guide:

• Click „test family‟ for a list of different tests
– Exact = use this for determining if a correlation is 

significantly greater than 0.

– F-tests (= ANOVAs)

– T-tests

– Chi2 tests

– z tests

• If you want to work out how many subjects to run in 
order to find a certain effect size then click on the „a 
priori‟ option in “type of power analysis”.

• If you want to find out how much chance you‟ve got 
of detecting a certain effect size given a certain 
number of participants, click „post hoc‟ instead.

G*Power 3 guide:

• E.g. what‟s the chance I‟ll get a significant 
result in my 2 group between subject 
experiment when I‟ve tested 20 people in each 
group and I‟m looking for a medium effect size 
(2 tailed test)? (i.e. Independent samples t-test with 
a Post-Hoc power analysis)
– Effect size d = .5 (half a SD between the group means)

– Alpha = .05 (level of significance)

– Sample size n1 (group 1) = 20 people

– Sample size n2 (group 2) = 20 people

– Click „Calculate‟

• Power is .38 (you‟ve got a 38% chance of getting a 
significant results under these conditions).

G*Power 3 guide:

• E.g. how many people do I want to test in 
order to stand a reasonable chance (80%) of 
detecting a medium effect size when 
comparing two between-subject groups? (i.e. 
a priori)
– Effect size d = .5 (half a SD between the group means)

– Alpha = .05 (level of significance)

– Power = .80 (80%)

– Let the allocation ratio be 1 (equal numbers in both 
groups).

– Click „Calculate‟

• Total sample size needed is 128 people (64 in each 
group).

META ANALYSIS
• Some have argued that progress in psychological 

research is slower than it ought to be despite 
thousands of studies.

• One reason could be how we analyse our data.

• Imagine we have a drug that affects learning -
and this drug always increases learning by half a 
standard deviation (medium effect size, Cohen‟s d 
= .5, difference in heights of men and women).

• We do a typical drug study and give 15 people 
the drug and 15 people get a placebo.

• This study is replicated 100 times.

• However, doing a power analysis tells us that 
power is 37% (n = 30, d = .5).

• That means out of 100 studies, only 37 will show 
a significant effect (alpha = 5%, 1 tailed).

• So - when we do our literature review, we review 
these 100 studies and conclude that (1) the 
evidence that the drug works is contradictory but 
(2) on balance, most studies show that the drug 
doesn‟t work (voting system).

Optimizing cumulative scientific 
knowledge in psychology
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• Another common interpretation is that we have to 
determine what differed between the experiments 
that showed an effect and those that did not.

• The reality is that the drug has worked exactly the 
same every time (differences are just sampling 
error).

• Schmidt (1992) & others argue that this is a 
pervasive problem with psychological studies: they 
tend to be chronically underpowered due to logistic 
constraints - and psychologists confuse statistical 
significance with „ecological‟ significance.

Optimizing cumulative scientific 
knowledge in psychology

Sampling error example:

• Imagine we had a test to predict job performance.

• We try it out on 1428 people and then measure 
their job performance.

• The correlation between the two (criterion validity 
coefficient) is .22 (Schmidt et al., 1985).

• In organisational psychology, the average study 
size is n = 68.

• What happens if we take random samples of 68 
people from the overall 1,428 sample to simulate a 
number of replication studies from organisational 
psychological research?

21 validity studies (n = 68):

• These are the range 
of correlation 
coefficients you get 
picking random 
samples of 68 people 
from the overall 
sample of 1428 
people.

• Traditional lit review 
would conclude 38% 
studies show effects -
only use test in those 
organisations…

.04 .20 .26*

.14 .02 .17

.31* .23 .39*

.12 .11 .22

.38* .21 .21

.27* .37* .36*

.15 .14 .29*

Meta analysis

• Meta-analysis can solve these problems.

• It involves combining the results from a 
number of similar studies to get a much 

bigger sample size - which means a more 
accurate estimate of the true effect size.

• Here‟s a simple example…

Relationships between self-assessed skill 
and risk taking

• I‟ve looked at the relationship between self-

assessed skill and risk-taking in a number of 
studies in the past.

• These studies have yielded contradictory 
findings.

• So – we did a meta-analysis to resolve this 
discrepancy… (Horswill et al., 2004 - Journal 

of Applied Social Psychology)

Correlations between self-report speed and self-assessed skill

Study: r n p Type of 
study

Present study .11 163 .162 Internet

Horswill, 1994 .18 995 <.001 Postal survey 
& lab data

McKenna & 
Horswill, 2002 
(Study 1)

.31 126 <.0005 Lab data

McKenna & 
Horswill, 2002
(Study 2)

.23 400 <.0005 Postal survey 
& lab data

Meta-analysis .20 <.0001
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How to do that meta-analysis:

To get the „grand‟ r:

• Step 1: convert r into r‟ (Fisher transformation) 
using tables (e.g. Howell, 2002, p.746).

• Step 2: multiply each r‟ by its n and then sum 
them.

• Step 3: divide this by the sum of all the n‟s.

• Step 4: convert the „grand‟ r‟ back to r (tables).

To get the overall significance:

• Step 1: Convert p into z scores (e.g. Howell, p.759, 
where p is the „smaller portion‟ - divide p by 2 first 
if two tailed).

• Step 2: multiply each z by its n and then sum them.

• Step 3: sum the squares of each n and square root 
the result.

• Step 4: divide the number from step 2 by the 
number from step 3 (this gives you an overall z 
score).

• Step 5: Convert the z score back to p using table 
(remember to multiply by 2 if it‟s 2-tailed).

How to do that meta-analysis:

What if the original 
results don‟t report r?

• You can convert any sort of output statistic 
(Cohen‟s d, t, F, etc.) into r and back again (see 
handout for formulae).

• Just convert all the study‟s results into r and 
proceed.

• Note that there can be plenty more sophistication 
in a meta-analysis compared with what I‟ve just 
shown - this is just a very simple example to give 
you an idea.


