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• Assignment 2:

- Due now.

• Final Exam

- 11 June 2:30pm,  Room HEATH, UnionComplex.

- An exam guide and practice questions will be provided next week.

• Small Group Presentations
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Kaleidoscope eyes: Anomalous visual 

experiences in synaesthesia
Professor Jason Mattingley

Wednesday, 13 May 2008 from 12-1pm
McElwain Building, Room 317

Synaesthesia is an unusual phenomenon in which a stimulus in one sensory 

modality elicits a vivid and involuntary perception in another modality. Thus, for 

example, the sound of the letter "A" may induce a sensation of redness, or the 

taste of roast chicken may feel jagged and angular. The phenomenon has 

intrigued philosophers, cognitive scientists and neurologists for over a century, 

yet little is known about its underlying neural and cognitive bases. In this talk I 

will review the heterogeneous manifestations of synaesthesia, and provide 

examples of subjective reports given by individuals with these unusual 

perceptual experiences. I will then describe the results of a recent series of 

laboratory experiments, in which we have identified a reliable cognitive marker 

for the colour-graphemic form of synaesthesia. Our data show for the first time 

that synaesthesia arises automatically, and that it cannot be suppressed even 

when it is detrimental to task performance. I will conclude by providing a 

tentative framework within which to understand the neural and cognitive bases 

of synaesthesia, and offer some suggestions for future research.
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Factor Analysis via PCA

• Overview

• The !number of factors" problem

• The rotation problem

• Modelling data in factor analysis

• Schematic representation of factor 

analysis via PCA

• SPSS
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Consider an investigation into the nature of intelligence.

ability to recite song 

lyrics from memory 

ability to hold two 

conversations at once

speed at completing 

crosswords

ability to assemble 

something from IKEA

ability to use a street 

directory

speed at completing 

jigsaw puzzles

What might be the !underlying factors"?
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Participant

1 -0.14 -2.33 -2.75 0.71 1.87 -0.32

2 0.42 -0.35 0.38 -0.16 -0.62 0.52

3 -1.18 -0.53 -2.74 0.87 -0.61 0.51

4 0.67 1.44 -1.02 -1.11 -1.87 -0.54

5 0.27 0.26 1.66 0.81 0.58 1.29

6 0.11 0.25 -0.85 1.26 1.17 2.52

7 1.11 0.97 -1.66 1.30 0.79 2.60

8 0.54 0.43 -1.10 -1.51 -0.46 -1.96

9 0.50 1.72 2.25 -1.02 -0.97 -0.08

10 0.86 2.07 -0.40 -0.02 -0.30 -0.34

11 0.64 0.40 -0.56 1.42 1.31 1.95

12 -0.51 0.25 -0.05 0.39 0.25 -0.28

13 0.48 0.92 -0.95 -0.59 0.31 -2.62

14 0.54 1.13 0.11 -0.07 -0.74 0.12

15 -0.39 -0.92 -1.41 1.54 1.34 2.61

16 0.87 2.16 0.70 -0.83 -2.75 -1.41

17 -0.62 -1.88 -0.18 -0.32 -0.80 -1.00

18 1.80 0.44 1.68 0.90 1.38 0.08

19 0.65 -1.01 1.70 2.55 2.75 4.25

20 -1.42 -0.22 -2.00 -0.11 0.69 -1.00

100 0.29 0.87 -1.99 0.24 -0.37 -0.28

...
...

...
...

...
...

...

X =
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X =
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Limitations

• Tabachnick and Fidell (2007, p. 612; Section 13.3.2) 
discuss the practical issues with PCA, especially the 
need to have honest, reliable correlations. Of course, 
checking the effect of transformations of the data on 
the interpretations is crucial.  In order to check if the    
matrix is !usefully" factorable, there needs to be 
several large correlations among the variables. 
Generally, the percentage of variance accounted for is 
also a guide.

R

7



PCA using SPSS

• It is important to not rely on the default values in the 
SPSS Factor procedure. There are many choice 
points and it is crucial that you exercise control. 
Further, it is unlikely that an appropriate analysis 
would be completed in a single run of the FACTOR 
procedure. The instructions below result from 
knowledge gained from earlier runs. The method of 
extraction is Principal Components, the number of 
“factors” is specified to be two (2) and the rotation 
method is orthogonal using the Varimax method.
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FACTOR

  /VARIABLES lyrics converse crossword ikea directory jigsaw

  /MISSING LISTWISE 

  /ANALYSIS lyrics converse crossword ikea directory jigsaw

  /PRINT INITIAL EXTRACTION ROTATION

  /FORMAT SORT

  /PLOT EIGEN ROTATION

  /CRITERIA FACTORS(2) ITERATE(25)

  /EXTRACTION PC

  /CRITERIA ITERATE(25)

  /ROTATION VARIMAX

  /METHOD=CORRELATION.

• /VARIABLES subcommand:  specifies the variables to be used in the analysis.

• /FORMAT subcommand:  specifies that the loading matrix in the output will be 

sorted which enables, most times, easier reading of the matrix.

• /PRINT subcommand:  specifies the default output, plus the correlation matrix 

and means and standard deviations.

• /PLOT subcommand:  specifies a plot of components 1 and 2 after rotation.

• /EXTRACTION subcommand:  specifies that the method of extraction to be PC, 

principal components.

• /ROTATION subcommand:  specifies that the Varimax criterion be used to 

orthogonally rotate the number of factors specified in the criteria subcommand or 

using the default that the number of factors to be rotated is the number with 

eigenvalues greater than 1.

Note:  a prior analysis (and the fact 

that the data were simulated with a 

known structure) indicated that 2 

factors would be rotated.

10



Deciding the number of “factors” to retain

The Initial Eigenvalues for each component are the elements of the diagonal 

matrix,   . From the eigenvalues, a decision about the number of “factors” to retain is 

made. In this example, it is very clear that two components are sufficient to explain 

the great majority of the total variance, 76% of the total variance.

L

1 2 3 4 5 6

2.55 0 0 0 0 0

0 2.02 0 0 0 0

0 0 0.51 0 0 0

0 0 0 0.49 0 0

0 0 0 0 0.25 0

0 0 0 0 0 0.18

L =
2.020/6 = 33.665%
2.546/6 = 42.442%

.511/6 = 8.509%

.489/6 = 8.154%

.253/6 = 4.209%

.181/6 = 3.022%

}76.107%

Factor Analysis

Communalities

1.000 .836

1.000 .681

1.000 .715

1.000 .887

1.000 .748

1.000 .700

VER1

VER2

VER3

SP1

SP2

SP3

Initial Extraction

Extraction Method: Principal Component Analysis.

Total Variance Explained

2.546 42.442 42.442 2.546 42.442 42.442 2.309 38.478 38.478

2.020 33.665 76.107 2.020 33.665 76.107 2.258 37.628 76.107

.511 8.509 84.615

.489 8.154 92.769

.253 4.209 96.978

.181 3.022 100.000

Component

1

2

3

4

5

6

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

Page 1
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Scree Plot
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The plot looks like the side of a mountain, 

and “scree” refers to the debris fallen 

from a mountain and lying at its base.

The scree test proposes to stop analysis 

at the point the mountain ends and the 

debris begins.
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21

Component

ikea

jigsaw

directory

lyrics

crossword

converse .825.004

.841- .084

.885.229

.280.818

- .044.835

- .071.939

Rotated Component Matrix
a

Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Page 1

The factor loading matrix

1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Arotated The first Component Matrix is the unrotated matrix,    . This is not 

interpreted. Orthogonal rotation using the Varimax method was specified 

and this Rotated Component Matrix (              ) is interpreted. In this 

clear-cut example, it is easy to see that the spatial variables load very 

highly on Component 1 and the verbal variables load highly on 

Component 2. The Sums of Squared Loadings (SSLs) for the rotated 

components are given in the table headed !Rotation Sums of Squared 

Loadings".

A

Arotated

T&F: If simple structure is present, the columns will have several high 

and many low values, while the rows will only have one high value. 

Rows with more than one high correlation correspond to variables that 

are “complex” because they reflect the influence of more than one factor.
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Rotation Sums of Squared Loadings

The Sums of Squared Loadings (SSLs) for the rotated components are 

given in the table headed !Rotation Sums of Squared Loadings".
1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Arotated

λ = 2.309 2.258

2.258/6 = 37.628%

2.309/6 = 38.478%}76.107%

Unrotated Solution Rotated Solution
(orthogonal)

Factor Analysis

Communalities

1.000 .836

1.000 .681

1.000 .715

1.000 .887

1.000 .748

1.000 .700

VER1

VER2

VER3

SP1

SP2

SP3

Initial Extraction

Extraction Method: Principal Component Analysis.

Total Variance Explained

2.546 42.442 42.442 2.546 42.442 42.442 2.309 38.478 38.478

2.020 33.665 76.107 2.020 33.665 76.107 2.258 37.628 76.107

.511 8.509 84.615

.489 8.154 92.769

.253 4.209 96.978

.181 3.022 100.000

Component

1

2

3

4

5

6

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

Page 1
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Communalities

Arotated

1 2

0.23 0.88 0.836

0.00 0.83 0.681

-0.08 0.84 0.714

0.94 -0.07 0.887

0.82 0.28 0.748

0.84 -0.04 0.699

2.31

38.5%

2.26

37.6%

h2

∑
a2 = .232 + .882 = .836

4.564

= λ1

∑
a2 = .232 + .002 +−.082 + .942 + .822 + .842 = 2.31

That is, 83.6% of the variance in 

!lyric recall" is accounted for by 

Factor 1 plus Factor 2.

This gives us an indication of how 

much !lyric recall" has in common 

with the two factors.

Sum of Square Loadings

/6 76.11%

The table labelled !Communalities" has a column called 

!Extraction". For an orthogonal solution, these are the 

sums of squared loadings for each variable. For an 

oblique solution, communalities are obtained using a 

regression approach that takes into account the 

correlations among the components or factors.

The communalities for each variable are the sums of 

squares of the rows of the component matrix, unrotated 

or rotated.

ExtractionInitial

lyrics

converse

crossword

ikea

directory

jigsaw .7001.000

.7481.000

.8871.000

.7151.000

.6811.000

.8361.000

Communali t ies

Extraction Method: Principal Component Analysis.

Page 1
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Factor Analysis

Communalities

1.000 .836

1.000 .681

1.000 .715

1.000 .887

1.000 .748

1.000 .700

VER1

VER2

VER3

SP1

SP2

SP3

Initial Extraction

Extraction Method: Principal Component Analysis.

Total Variance Explained

2.546 42.442 42.442 2.546 42.442 42.442 2.309 38.478 38.478

2.020 33.665 76.107 2.020 33.665 76.107 2.258 37.628 76.107

.511 8.509 84.615

.489 8.154 92.769

.253 4.209 96.978

.181 3.022 100.000

Component

1

2

3

4

5

6

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

Page 1

Because a PC model was specified, the eigenvalues and percentage of variance 

explained in the !Extraction sums of squared loadings" part of the !Total Variance 

Explained Table" are the same as for the initial eigenvalues. However, after rotation, 

these SSLs change and are called !Rotation Sums of Squared Loadings".  These are 

reported in an interpretation.

Extraction Sums of Squared Loadings

=
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Component 1
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Component Plot in Rotated Space

Page 1

Loading Plots

Rotated Solution
(orthogonal)
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These are useful when two or three factors are 

rotated. When two components or factors are 

rotated SPSS produces a two-dimensional plot. 

For three components/factors, SPSS produces a 

plot that can be !spun" to illustrate the patterns in 

the loadings. It"s helpful to add lines as SPSS only 

plots the labelled points.
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Common Factor Analysis

• Types of factor analysis

• The common factor model

• Euler representation

• Modelling the data in factor analysis

• The principal axis factoring method

• Schematic links in factor analysis
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Common Factor Analysis

Introduction

We have introduced the full principal 

components analysis in which the 

original variables are transformed via a 

linear combination into the same number 

of uncorrelated components. The aim for 

a common factor analysis is the same as 

for factor analysis via PCA. The 

objective of a factor analysis is to 

develop a model that makes substantive 

sense and describes the data to a 

reasonable extent.
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Types of factor analysis

• Factor Analysis via PCA

- uses The Principal Components Model

• Common Factor Analysis

- uses The Common Factor Model

The choice of factor model depends on a researcher"s 

assumptions about the nature of the variance for a variable.
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The Common Factor Model
Common Variance

Factor analysis seeks to explain the correlation among the variables. 

The Common Factor Model assumes that the variation in the scores 

of individuals on a variable has two sources:

F1

V1 V2 V3

E1 E2 E3 E4 E5 E6

V4 V5 V6

F2
a. Common Variance

This is part of the variance for a variable 

due to the assumption that it has 

something in common with at least one 

of the other variables in the analysis. 

Another way of stating this is that the 

variance is due to common factors, F"s, 

which are latent (i.e. unobserved) 

variables that influence the scores on 

more than one of the observed variables. 

This leads to a model for the data called 

the common factor model.
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Factor analysis seeks to explain the correlation among the variables. 

The Common Factor Model assumes that the variation in the scores 

of individuals on a variable has two sources:

The Common Factor Model
Common Variance

F1

V1 V2 V3

E1 E2 E3 E4 E5 E6

V4 V5 V6

F2
b. Specific Variance

This is due to influences that are specific 

to one variable and affect no other 

variable. These influences include both 

pure error variance and unique variance 

that is reliable but specific to a to a single 

variable. These latter types cannot be 

disentangled from each other so they are 

lumped together into a single latent 

factor that is unique to just one measure, 

(the E"s).

The objective of a common factor analysis is to identify 
the latent factors underlying the common variance.
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The Common Factor Model
Common Variance (example)

Need for 

Achievement

Perseverance

E1 E2 E3

Industriousness Perfectionism

It"s assumed that these three measures of personality correlate is 

because they are predicted from a “common cause” (need for 

achievement), the factor in this example, is not a variable that is 

actually measured. Rather this factor is thought of as the sum of 

the parts of the variables measured to study it.
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Hypothesised parts of the 

variance of a variable

Error 

Variance

Unique 

Variance

Common 

Variance
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Consider six variables that are intercorrelated.

The Common Factor Model
An Euler representation
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Consider the overlap between the six variables

The Common Factor Model
An Euler representation
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Underlying constructs should only be related 
to the common variance

The Common Factor Model
An Euler representation

27



Need for 

Achievement

Perseverance

E1 E2 E3

Industriousness Perfectionism

The Common Factor Model
An Euler representation

For example, “Need for Achievement” should only be 
related to what"s common among “Perseverance”, 

“Industriousness”, and “Perfectionism”
28



So to find underlying constructs, we"re only 
interested in the common variance.

The Common Factor Model
An Euler representation

29



So only the common variance is factor analysed

The Common Factor Model
An Euler representation
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The Common Factor Model
An Euler representation

We need to know the size of 

the common variance before 

we can factor analyse it!

The size of the common 

variance is given by the 

communalities.

BUT the communalities change 

depending on how many factors 

we retain.

So we need to know how many 

factors we"re going to retain to 

get the commonalities.

BUT we can"t decide how 

many factors to retain until 

we do a factor analysis!

But there"s a BIG problem...
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The Common Factor Model
An Euler representation

Interpretation is basically the 

same as for factor analysis 

via PCA.

The number of factors is 

decided upon.

The type of rotation (orthogonal 

or oblique) is decided upon.

Once that problem has been solved...
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Modelling the data in Common Factor Analysis
Use Regression

In the definition of communalities in factor analysis via principal 

components analysis each variable was considered as being a 

linear combination of the factors.

• Consider the previous regression equation:

Communalities

Zj ← F1F2 . . . Fm

• There!s an R2 value for each variable.
- How much of the variance of a variable is accounted for by the factors.

- How much the variable has in common with the factors.

• It is called the communality of the variable,    .

• For orthogonal solutions, 

h2

The sum of squared loadings

h2
j = a2

j1 + · · · + a2
jm

Recall from last lecture...
33



Participant 1 2

1 0.96 -1.25

2 0.02 0.20

3 0.51 -1.38

4 -0.87 0.46

5 0.79 0.59

6 1.52 -0.17

7 1.55 0.20

8 -1.01 0.29

9 -0.71 1.33

10 -0.05 0.87

11 1.50 0.18

12 0.21 -0.10

13 -0.63 0.44

14 -0.09 0.58

15 1.73 -0.84

16 -1.28 1.14

17 -0.43 -0.72

18 0.82 1.36

19 2.76 0.29

20 0.01 -1.00

100 0.14 -0.12

...
...

F
Participant

1 -0.10 -1.62 -1.78 0.78 1.45 -0.16

2 0.50 -0.19 0.31 -0.07 -0.28 0.37

3 -1.22 -0.32 -1.77 0.93 -0.28 0.37

4 0.77 1.10 -0.62 -0.99 -1.15 -0.30

5 0.34 0.25 1.16 0.87 0.55 0.86

6 0.17 0.24 -0.51 1.31 0.96 1.65

7 1.24 0.76 -1.05 1.35 0.70 1.70

8 0.63 0.37 -0.68 -1.38 -0.17 -1.21

9 0.59 1.30 1.56 -0.90 -0.53 -0.01

10 0.97 1.55 -0.21 0.07 -0.06 -0.18

11 0.74 0.35 -0.32 1.47 1.06 1.28

12 -0.50 0.24 0.02 0.47 0.32 -0.14

13 0.56 0.72 -0.58 -0.49 0.36 -1.63

14 0.63 0.87 0.13 0.02 -0.37 0.12

15 -0.37 -0.60 -0.88 1.58 1.08 1.70

16 0.98 1.62 0.52 -0.72 -1.77 -0.86

17 -0.62 -1.29 -0.06 -0.22 -0.41 -0.60

18 1.98 0.38 1.18 0.96 1.11 0.09

19 0.75 -0.67 1.19 2.56 2.06 2.75

20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60

100 0.36 0.69 -1.27 0.32 -0.11 -0.14

...
...

...
...

...
...

...

Z

←

Modelling the data in Common Factor Analysis
Use Regression

Zi1 = a11Fi1 + a21Fi2 + ei1

Zi2 = a12Fi1 + a22Fi2 + ei2

Zi3 = a13Fi1 + a23Fi2 + ei3

Zi4 = a14Fi1 + a24Fi2 + ei4

Zi5 = a15Fi1 + a25Fi2 + ei5

Zi6 = a16Fi1 + a26Fi2 + ei6

Zj ← F1F2 . . . Fm

Zij = aj1Fi1 + . . . + ajmFim + eij
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Modelling the data in Common Factor Analysis
Modelling the scores on each variable

Scores on a variable can be predicted from scores on the factors.

Z ← F1F2 . . . Fm

So for each variable:

Zij aj1Fi1 + . . . + ajmFim= + eij

Scores explained
by factors

= + unexplained
by factors

DATA MODEL= + RESIDUAL
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Modelling the data in Common Factor Analysis
Modelling the variance of each variable

= var(regression)var(Z) +var(error)

u
2

h
21 = +

Total
variance

=
Common
variance

+
Specific variance
(unique + error)

DATA MODEL RESIDUAL= +

36



In factor analysis via principal components 

analysis the correlation matrix was !factored". 

The total variance was !repackaged". The full 

correlation matrix contains 1"s on the diagonal. 

This is the variance of each standardised 

variable.

Correlation matrices used in factor analysis

Recall from last lecture...

Rfull

1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

Rresidual

0.16 -0.09 -0.07 -0.00 -0.03 -0.02

-0.09 0.32 -0.20 0.02 -0.04 0.03

-0.07 -0.20 0.29 0.01 -0.02 0.07

-0.00 0.02 0.01 0.11 -0.04 -0.09

-0.03 -0.04 -0.02 -0.04 0.25 -0.20

-0.02 0.03 0.07 -0.09 -0.20 0.30

+

+

Rreproduced

0.84 0.73 0.73 0.15 0.44 0.15

0.73 0.68 0.69 -0.05 0.23 -0.03

0.73 0.69 0.71 -0.14 0.17 -0.11

0.15 -0.05 -0.14 0.89 0.75 0.79

0.44 0.23 0.17 0.75 0.75 0.67

0.15 -0.03 -0.11 0.79 0.67 0.70

=

=

The reproduced correlation matrix

Note: The closer that these reproduced correlations match the original correlations, the 

better the factor analysis captured the relationship among the variables. This difference 

comes out in the residual correlations. The goal is to get these as small as possible.

Rfull
1

1

1

1

1

1

The full correlation 

matrix used in PCA

1 = the total variance 

of each variable
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Correlation matrices used in factor analysis

Recall from last lecture...

Rfull

1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

Rresidual

0.16 -0.09 -0.07 -0.00 -0.03 -0.02

-0.09 0.32 -0.20 0.02 -0.04 0.03

-0.07 -0.20 0.29 0.01 -0.02 0.07

-0.00 0.02 0.01 0.11 -0.04 -0.09

-0.03 -0.04 -0.02 -0.04 0.25 -0.20

-0.02 0.03 0.07 -0.09 -0.20 0.30

+

+

Rreproduced

0.84 0.73 0.73 0.15 0.44 0.15

0.73 0.68 0.69 -0.05 0.23 -0.03

0.73 0.69 0.71 -0.14 0.17 -0.11

0.15 -0.05 -0.14 0.89 0.75 0.79

0.44 0.23 0.17 0.75 0.75 0.67

0.15 -0.03 -0.11 0.79 0.67 0.70

=

=

The reproduced correlation matrix

Note: The closer that these reproduced correlations match the original correlations, the 

better the factor analysis captured the relationship among the variables. This difference 

comes out in the residual correlations. The goal is to get these as small as possible.

Rfull
1

1

1

1

1

1

The full correlation 

matrix used in PCA

1 = the total variance 

of each variable

h
2

1

h
2

2

h
2

3

h
2

4

h
2

5

h
2

6

Rreduced

The reduced correlation 

matrix used in PCA

     = the communalities 

of each variable

h
2

In a common factor analysis only the common 

variance is desired to be factored and it is this 

common variance that is placed on the 

diagonal of the correlation matrix. This matrix is 

called the reduced correlation matrix with the 

communalities in the diagonal. It is factored 

and the eigenvalues and eigenvectors of this 

reduced matrix are found and form the basis of 

the common factor solution.

38



Recall from last lecture...

Arotated

1 2

0.23 0.88 0.836

0.00 0.83 0.681

-0.08 0.84 0.714

0.94 -0.07 0.887

0.82 0.28 0.748

0.84 -0.04 0.699

2.31

38.5%

2.26

37.6%

h2

∑
a2 = .232 + .882 = .836

4.564

= λ1

∑
a2 = .232 + .002 +−.082 + .942 + .822 + .842 = 2.31

That is, 83.6% of the variance in 

!lyric recall" is accounted for by 

Factor 1 plus Factor 2.

This gives us an indication of how 

much !lyric recall" has in common 

with the two factors.

Sum of Square Loadings

/6 76.11%

The communality is the variance of the variable that it has in common with the other 

variables. We need to determine the proportion of each variable"s total variance that is 

common variance. The estimate of the communality depends on the number of factors in 

the model. So we either need to know the communality or the number of factors to be 

able to get a solution. Unfortunately, these are unknown prior to the factor analysis. This 

is sometimes called the factor indeterminacy problem.

Factor indeterminacy problem

The name for 
the BIG problem

One way of solving this problem is called:

Principal axis factoring (paf)...
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Principal axis factoring (paf)

• This method solves the problem by starting with initial 
estimates of the communality together with an estimate 
of the number of factors.

• An initial estimate of the communality for a variable is 
the square multiple correlation (SMC) of that variable 
being predicted from the other variables in the analysis:

Z1 ← Z2 . . .Zp R
2

1 = initial ĥ
2

1
.

.

.

.

.

.

Zp ← Z1 . . .Zp−1 R
2

p
= initial ĥ

2

p

This provides an estimate of how much variance a 

variable has in common with the other variables.
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Principal axis factoring (paf)
The paf procedure

1. Estimate the number of factors from the Singular Value Decomposition (SVD) of 

the          matrix;

2. get an initial estimate of the communalities from the squared multiple correlations;

3. insert these into the diagonal of the         correlation matrix;

4. factor the reduced matrix                   ;

5. using the estimate of the number of factors, calculate the communalities from this 

solution using the sum of squared loadings of the unrotated matrix of factor 

loadings,    ;

6. insert the new estimates in the diagonal of the correlation matrix to form a new 

reduced correlation matrix and factor this new matrix; 

7. Repeat this process until there is very little change in the communality estimates.

Once an unrotated factor matrix is found, the procedure is 

the same as for factor analysis via principal components.

Rfull

Rfull

(Rreduced)

A
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Yes

!

No

Repeat 

until the 

change 

is small.

1

p

1

A
m

1

p

1

A
m

1

p

1 p

R

1

p

1 p

1

p

1 p

L

V

λ1

λp h
2

Decide on the 

number of factors 

to retain =  m

get an initial 

estimate of  

from the SMCs

h
2

1

p

1 p

1

p

1 p

L

V

λ1

λp h
2

1

p

1 p

h
2

Rreduced

Insert     in 

diagonal 

h
2

Very small 

change in     ?h
2

Principal axis factoring (paf)
The paf procedure
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Using SPSS for Common Factor Analysis
Research Question and Design

• From T&F (p. 651): During the second year of the panel study described in 

Appendix B Section B.1, participants completed the Bem Sex Role Inventory 

(BSRI; Bem, 1974). The sample included 369 middle-class, English-speaking 

women between the ages of 21 and 60 who were interviewed in person.

Forty-five items from the BSRI were selected for this research, where 20 items 

measure femininity, 19 masculinity, and 5 social desirability. Respondents 

attribute traits (e.g., “gentle”, “shy”, “dominant”) to themselves by assigning 

numbers between 1 (“never or almost never true of me”) and 7 (“always or 

almost always true of me”) to each of the items. Responses are summed to 

produce separate masculine and feminine scores. Masculinity and femininity are 

conceived as orthogonal dimensions of personality with both, one, or neither 

descriptive of any given individual.

Previous factor analytic work had indicated the presence of between three and 

five factors underlying the items of the BSRI. Investigation of the factor structure 

for this sample of women is a goal of this analysis.
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Using SPSS for Common Factor Analysis
Data Diagnostics

• T&F identified 25 cases that might be considered outliers using a criterion of 

# = .001 with 44df, critical $2 = 78.75 of the Mahalanobis distance.

• Even though we should run the analysis with and without these outliers and 

compare the data, we"ll eliminate these 25 cases so you can compare these 

numbers with those obtained by T&F.
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Using SPSS for Common Factor Analysis
SPSS Syntax

FACTOR

  /VARIABLES helpful reliant defbel yielding cheerful indpt athlet shy assert

  strpers forceful affect flatter loyal analyt feminine sympathy moody

  sensitiv undstand compass leaderab soothe risk decide selfsuff conscien

  dominant masculin stand happy softspok warm truthful tender gullible leadact

  childlik individ foullang lovchil compete ambitiou gentle

  /MISSING LISTWISE

  /PRINT INITIAL REPR KMO EXTRACTION ROTATION

  /FORMAT SORT

  /PLOT EIGEN ROTATION

  /CRITERIA FACTORS(3)

  /EXTRACTION PAF

  /ROTATION VARIMAX

  /METHOD=CORRELATION .

You exert control here

You need another run to get 

an oblique rotation solution

45



Interpretation of 

Common Factor Analysis

• Choice of factor model.

• Factorability and other assumptions.

• Number of factors to retain.

• Type of rotation.

• The interpretation of the factor solution.

• Adequacy of the factor solution.
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Interpretation of Common Factor Analysis
Choice of factor model

• If your goal is to summarise patterns and/or reduce data.

- Factor analysis via Principal Components Analysis is appropriate.

• If your goal is to identify underlying constructs.

- Common factor analysis is appropriate.

For this analysis, it"s believed that constructs 

of masculinity and femininity underlie the 

data, so a common factor analysis is used.
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Interpretation of Common Factor Analysis
Factorability and other assumptions

Looking through the 44 x 44 variable correlation matrix (part shown above), there are 

several large correlations (many in excess of .3), therefore patterns in responses to the 

variables are anticipated.

athletindptcheerfulyieldingdefbelrelianthelpful

helpful

reliant

defbel

yielding

cheerful

indpt

athlet

shy

assert

strpers

forceful

affect

flatter

loyal

analyt

feminine

sympathy

344344344344344344344

.681.735.031.021.020.196.002

- .022- .018.117.124.125.070.163

344344344344344344344

.594.604.000.000.392.001.005

.029.028.201.197.046.185.153

344344344344344344344

.876.000.777.131.000.001.006

.008.234- .015- .081.221.173.148

344344344344344344344

.337.043.000.223.000.004.000

.052.109.284.066.268.153.314

.125- .045.155.112.096- .056.065

.095.050.270.086.297.104.349

.166.268.002- .175.297.173.070

.205.314.173- .093.275.240.218

.147.324.176- .107.280.301.177

- .118- .156- .185.010- .239- .114- .138

1.000.161.181.053.066.147.173

.1611.000.186- .034.211.514.271

.181.1861.000.181.102.247.220

.053- .034.1811.000- .078- .012.114

.066.211.102- .0781.000.145.239

.147.514.247- .012.1451.000.337

.173.271.220.114.239.3371.000

Correlations

Page 1
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Interpretation of Common Factor Analysis
Factorability and other assumptions

The KMO measure is also available. It"s a measure of the proportion of variance in 

your variables which is common variance. High values (close to 1) indicate that a factor 

analysis may be useful. If this value drops below .5, then an FA may not be so useful.

Bartlett"s test of sphericity tests the null hypothesis that your correlation matrix is an 

identity matrix, which would indicate that the variables are completely uncorrelated. Of 

course you should expect to find some factors because of the conceptual design of the 

study, so this check is a bit redundant.

Skewness, outliers, linearity, multicollinearity are all potential issues in the sense that 

they affect the honesty of the correlations. (See T&F"s treatment of these in this 

particular case: p. 652). There is no statistical inference in factor analysis, so normality 

isn"t an issue, but honest correlations are!

 - - - - - - - - - - -   F A C T O R   A N A L Y S I S   - - - - - - - - - - -

Factor Analysis

KMO and Bartlett's Test

.852

5954.22

946

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square

df

Sig.

Bartlett's Test of
Sphericity

Communalities

.374 .283

.461 .400

.417 .234

.230 .129

.492 .244

.538 .449

.258 8.337E-02

.325 .157

.538 .439

.593 .511

.566 .459

.553 .456

.296 .149

HELPFUL

self reliant

defend beliefs

YIELDING

CHEERFUL

independent

athletic

SHY

assertive

strong personality

FORCEFUL

a!ectionate

FLATTER

Initial Extraction

Extraction Method: Principal Axis Factoring.

Page 2
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Interpretation of Common Factor Analysis
General strategy for handling number of factors and rotation

The overall strategy for handling the number of factors to retain and the type of 

rotation to use is to generate a number of factor solutions from the range of possible 

values for the number of factors and from the two types of rotation.

The best of these factor solutions is used where “best” is defined as the most 

interpretable solution that meets the needs of the researcher.

It"s highly unlikely that a solution will emerge in a single run of SPSS FACTOR.

Deciding on the number of factors is crucial and no method 

can give a !correct" answer. The information for deciding the 

number of factors is in the initial statistics section of the output.
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Interpretation of Common Factor Analysis
Number of factors to retain

a. Eigenvalues > 1 rule

Total Variance Explained

8.194 18.623 18.623

5.154 11.713 30.335

2.590 5.887 36.223

2.073 4.711 40.934

1.648 3.744 44.678

1.415 3.216 47.895

1.291 2.933 50.828

1.221 2.775 53.604

1.110 2.522 56.125

1.078 2.449 58.575

1.032 2.345 60.919

.951 2.162 63.081

.942 2.140 65.221

.882 2.004 67.225

.863 1.962 69.188

.828 1.883 71.070

.770 1.751 72.821

.750 1.704 74.525

.737 1.675 76.200

.690 1.569 77.769

.652 1.481 79.250

.646 1.468 80.718

.626 1.423 82.141

.587 1.335 83.476

.571 1.298 84.774

.550 1.249 86.023

.513 1.166 87.189

.501 1.138 88.327

.474 1.078 89.405

.440 1.001 90.406

.435 .990 91.395

.392 .890 92.286

.368 .835 93.121

.366 .831 93.952

.350 .795 94.747

.330 .751 95.498

.319 .725 96.223

.302 .685 96.909

.287 .653 97.562

.260 .590 98.152

.250 .568 98.720

.230 .524 99.244

.207 .470 99.713

.126 .287 100.000

Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Total % of Variance Cumulative %

Initial Eigenvalues

Extraction Method: Principal Axis Factoring.
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Total Variance Explained

8.194 18.623 18.623

5.154 11.713 30.335

2.590 5.887 36.223

2.073 4.711 40.934

1.648 3.744 44.678

1.415 3.216 47.895

1.291 2.933 50.828

1.221 2.775 53.604

1.110 2.522 56.125

1.078 2.449 58.575

1.032 2.345 60.919

.951 2.162 63.081

.942 2.140 65.221

.882 2.004 67.225

.863 1.962 69.188

.828 1.883 71.070

.770 1.751 72.821

.750 1.704 74.525

.737 1.675 76.200

.690 1.569 77.769

.652 1.481 79.250

.646 1.468 80.718

.626 1.423 82.141

.587 1.335 83.476

.571 1.298 84.774

.550 1.249 86.023

.513 1.166 87.189

.501 1.138 88.327

.474 1.078 89.405

.440 1.001 90.406

.435 .990 91.395

.392 .890 92.286

.368 .835 93.121

.366 .831 93.952

.350 .795 94.747

.330 .751 95.498

.319 .725 96.223

.302 .685 96.909

.287 .653 97.562

.260 .590 98.152

.250 .568 98.720

.230 .524 99.244

.207 .470 99.713

.126 .287 100.000

Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Total % of Variance Cumulative %

Initial Eigenvalues

Extraction Method: Principal Axis Factoring.
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This is the default in SPSS 

FACTOR and is not 

necessarily (almost certainly 

NOT) the best. It generally 

gives the maximum number of 

interpretable factors.

51



Factor Number

4 34 13 93 73 53 33 12 92 72 52 32 11 91 71 51 31 197531

E
ig

e
n

v
a

lu
e

1 0

8

6

4

2

0

Scree Plot

Page 1

Interpretation of Common Factor Analysis
Number of factors to retain

b. Scree Test

Discontinuities and changes in 

slope are used to indicate the 

range of values for the number 

of factors.

Change in slope about here. 

Therefore retain 3 factors.
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Interpretation of Common Factor Analysis
Number of factors to retain

c. Parallel analysis test

Copyright 2000 Psychonomic Society, Inc. 396

Behavior Research Methods, Instruments, & Computers
2000, 32 (3), 396-402

Users of factor and principal components analyses are
required to make decisions on a number of technical is-
sues, including the number factors to retain, extraction
and rotation techniques, and the procedure for computing
factor scores. The choices and controversies involved in
each step have probably led many to shy away from the
procedure or to be suspicious of its results. It seems only
logical to assume that the many possible routes through
the decision tree result in differing results for the same
data. However, the crucial decision is that of determining
how many factors to retain. Assorted decisions on the
other issues generally produce similar results when the
optimal number of factors is specified (Zwick & Velicer,
1986). In addition to conflicting findings, other problems
also emerge when nonoptimal numbers of factors are ex-
tracted. Under-extraction compresses variables into a
small factor space, resulting in a loss of important infor-
mation, a neglect of potentially important factors, a dis-
torted fusing of two or more factors, and an increase in
error in the loadings. Over-extraction diffuses variables
across a large factor space, potentially resulting in factor
splitting, in factors with few high loadings, and in re-
searchers’ attributing excessive substantive importance to
trivial factors (see Wood, Tataryn, & Gorsuch, 1996;
Zwick & Velicer, 1986, for reviews).

Users who are concerned with extracting the optimal
number of factors are nevertheless confronted with a va-
riety of decision rules that have been described in the lit-
erature (see Coovert & McNelis, 1988; Floyd & Widaman,
1995; Gorsuch, 1997; Merenda, 1997; Tinsley & Tinsley,
1987; Turner, 1998; and Zwick & Velicer, 1986, for re-
views). The discussions are sometimes technical, and

many users simply trust the default decision rule imple-
mented in their statistical software packages (typically the
eigenvalues-greater-than-one rule). Other users examine
scree plots of eigenvalues, which are also available in pop-
ular statistical packages (such as SPSS and SAS), before
making their decisions. Unfortunately, these two highly
popular decision rules are problematic. The eigenvalues-
greater-than-one rule typically overestimates, and some-
times underestimates, the number of components (Zwick
& Velicer, 1986). This overly mechanical and somewhat
arbitrary rule also does not always result in components
that are reliable, as was originally believed (Cliff, 1988).
The scree test has been a strongly promoted alternative rule
of thumb (Cattell & Vogelmann, 1977). But it involves eye-
ball searches of plots for sharp demarcations between the
eigenvalues for major and trivial factors. In practice, such
demarcations do not always exist or there may be more
than one demarcation point. Not surprisingly, the relia-
bility of scree plot interpretations is low, even among ex-
perts (Crawford & Koopman, 1979; Streiner, 1998).

Fortunately, there is increasing consensus among sta-
tisticians that two less well-known procedures, parallel
analysis and Velicer’s minimum average partial (MAP)
test, are superior to other procedures and typically yield
optimal solutions to the number of components problem
(Wood et al., 1996; Zwick & Velicer, 1982, 1986). These
procedures are statistically based, rather than being me-
chanical rules of thumb. In parallel analysis, the focus is
on the number of components that account for more vari-
ance than the components derived from random data. In
the MAP test, the focus is on the relative amounts of sys-
tematic and unsystematic variance remaining in a corre-
lation matrix after extractions of increasing numbers of
components. The popular SPSS and SAS statistical soft-
ware packages do not permit users to perform these rec-
ommended tests. However, the packages do permit users
to write their own programs. The present paper describes
how parallel analyses and the MAP test can be readily con-

This work was supported by a grant from the Social Sciences and
Humanities Research Council of Canada. Address correspondence to
B. P. O’Connor, Department of Psychology, Lakehead University,
955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada (e-mail: brian.
oconnor@lakeheadu.ca).

SPSS and SAS programs for
determining the number of components

using parallel analysis and Velicer’s MAP test

BRIAN P. O’CONNOR
Lakehead University, Thunder Bay, Ontario, Canada

Popular statistical software packages do not have the proper procedures for determining the number
of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum
average partial (MAP) test are validated procedures, recommended widely by statisticians. However,
many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-
greater-than-one rule. Use of the proper procedures might be increased if these procedures could be
conducted within familiar software environments. This paper describes brief and efficient programs
for using SPSS and SAS to conduct parallel analyses and the MAP test.

http://people.ok.ubc.ca/brioconn/nfactors/nfactors.html
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Interpretation of Common Factor Analysis
Number of factors to retain

c. Parallel analysis test

If our data were random, the size 

of the eigenvalues would be due 

to chance alone.

If our factors are meaningful, our 

observed eigenvalues should be 

bigger than that expected by 

chance.

So we can check whether our 

factors are useful by checking 

whether they have bigger 

eigenvalues than factors from 

random data.

* Parallel Analysis program.

set mxloops=9000 printback=off width=80  

seed = 1953125.

matrix.

* enter your specifications here.

compute ncases   = 344. 

compute nvars    = 44.

compute ndatsets = 1000.

compute percent  = 95.

* Specify the desired kind of parallel 

analysis, where:

  1 = principal components analysis

  2 = principal axis/common factor analysis.

compute kind = 1 .

****************** End of user specifications. ******************

* principal components analysis.

do if (kind = 1).

compute evals = make(nvars,ndatsets,-9999).

compute nm1 = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

            cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* principal axis / common factor analysis with SMCs on the diagonal.

do if (kind = 2).

compute evals = make(nvars,ndatsets,-9999).

compute nm1 = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

            cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute r = d * vcv * d.

compute smc = 1 - (1 &/ diag(inv(r)) ).

call setdiag(r,smc).

compute evals(:,#nds) = eval(r).

end loop.

end if.
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Interpretation of Common Factor Analysis
Number of factors to retain

c. Parallel analysis test

Random Data Eigenvalues

Root Means Prcntyle

1 1.762089 1.85146

2 1.6794 1.741623

3 1.613712 1.665987

4 1.561228 1.608289

5 1.512086 1.55255

6 1.46828 1.505712

7 1.427712 1.464369

8 1.389664 1.425624

9 1.353425 1.387723

10 1.31909 1.352092

11 1.285107 1.316974

12 1.251495 1.283208

13 1.220034 1.250651

14 1.190358 1.21916

15 1.160454 1.188693

16 1.131468 1.159788

17 1.103657 1.129844

18 1.075725 1.101703

19 1.049466 1.074777

20 1.022778 1.047169

21 0.99731 1.021643

22 0.97245 0.996381

23 0.948068 0.972319

24 0.923267 0.947195

25 0.898762 0.922354

26 0.874836 0.899488

27 0.851738 0.874302

28 0.828454 0.85368

29 0.805789 0.829765

30 0.782461 0.806874

31 0.760162 0.783089

32 0.73716 0.760735

33 0.715188 0.73753

34 0.692423 0.715691

35 0.670355 0.693319

36 0.647706 0.670879

37 0.625627 0.649194

38 0.602518 0.626582

39 0.579569 0.603138

40 0.556392 0.581074

41 0.531337 0.554827

42 0.504355 0.53059

43 0.475846 0.503024

44 0.441 0.471835

Total Variance Explained

8.194 18.623 18.623

5.154 11.713 30.335

2.590 5.887 36.223

2.073 4.711 40.934

1.648 3.744 44.678

1.415 3.216 47.895

1.291 2.933 50.828

1.221 2.775 53.604

1.110 2.522 56.125

1.078 2.449 58.575

1.032 2.345 60.919

.951 2.162 63.081

.942 2.140 65.221

.882 2.004 67.225

.863 1.962 69.188

.828 1.883 71.070

.770 1.751 72.821

.750 1.704 74.525

.737 1.675 76.200

.690 1.569 77.769

.652 1.481 79.250

.646 1.468 80.718

.626 1.423 82.141

.587 1.335 83.476

.571 1.298 84.774

.550 1.249 86.023

.513 1.166 87.189

.501 1.138 88.327

.474 1.078 89.405

.440 1.001 90.406

.435 .990 91.395

.392 .890 92.286

.368 .835 93.121

.366 .831 93.952

.350 .795 94.747

.330 .751 95.498

.319 .725 96.223

.302 .685 96.909

.287 .653 97.562

.260 .590 98.152

.250 .568 98.720

.230 .524 99.244

.207 .470 99.713

.126 .287 100.000

Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Total % of Variance Cumulative %

Initial Eigenvalues

Extraction Method: Principal Axis Factoring.
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Random Data Eigenvalues

Root Means Prcntyle

1 1.762089 1.85146

2 1.6794 1.741623

3 1.613712 1.665987

4 1.561228 1.608289

5 1.512086 1.55255

6 1.46828 1.505712

7 1.427712 1.464369

8 1.389664 1.425624
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Interpretation of Common Factor Analysis
Number of factors to retain

c. Parallel analysis test

Random Data Eigenvalues

Root Means Prcntyle

1 1.762089 1.85146

2 1.6794 1.741623

3 1.613712 1.665987

4 1.561228 1.608289

5 1.512086 1.55255

6 1.46828 1.505712

7 1.427712 1.464369

8 1.389664 1.425624

9 1.353425 1.387723

10 1.31909 1.352092

11 1.285107 1.316974

12 1.251495 1.283208

13 1.220034 1.250651

14 1.190358 1.21916

15 1.160454 1.188693

16 1.131468 1.159788

17 1.103657 1.129844

18 1.075725 1.101703

19 1.049466 1.074777

20 1.022778 1.047169

21 0.99731 1.021643

22 0.97245 0.996381

23 0.948068 0.972319

24 0.923267 0.947195

25 0.898762 0.922354

26 0.874836 0.899488

27 0.851738 0.874302

28 0.828454 0.85368

29 0.805789 0.829765

30 0.782461 0.806874

31 0.760162 0.783089

32 0.73716 0.760735

33 0.715188 0.73753

34 0.692423 0.715691

35 0.670355 0.693319

36 0.647706 0.670879

37 0.625627 0.649194

38 0.602518 0.626582

39 0.579569 0.603138

40 0.556392 0.581074

41 0.531337 0.554827

42 0.504355 0.53059

43 0.475846 0.503024

44 0.441 0.471835

Random Data Eigenvalues

Root Means Prcntyle

1 1.762089 1.85146

2 1.6794 1.741623

3 1.613712 1.665987

4 1.561228 1.608289

5 1.512086 1.55255

6 1.46828 1.505712

7 1.427712 1.464369

8 1.389664 1.425624

Total Variance Explained

8.194 18.623 18.623

5.154 11.713 30.335

2.590 5.887 36.223

2.073 4.711 40.934

1.648 3.744 44.678

1.415 3.216 47.895

1.291 2.933 50.828

1.221 2.775 53.604

1.110 2.522 56.125

1.078 2.449 58.575

1.032 2.345 60.919

.951 2.162 63.081

.942 2.140 65.221

.882 2.004 67.225

.863 1.962 69.188

.828 1.883 71.070

.770 1.751 72.821

.750 1.704 74.525

.737 1.675 76.200

.690 1.569 77.769

.652 1.481 79.250

.646 1.468 80.718

.626 1.423 82.141

.587 1.335 83.476

.571 1.298 84.774

.550 1.249 86.023

.513 1.166 87.189

.501 1.138 88.327

.474 1.078 89.405

.440 1.001 90.406

.435 .990 91.395

.392 .890 92.286

.368 .835 93.121

.366 .831 93.952

.350 .795 94.747

.330 .751 95.498

.319 .725 96.223

.302 .685 96.909

.287 .653 97.562

.260 .590 98.152

.250 .568 98.720

.230 .524 99.244

.207 .470 99.713

.126 .287 100.000

Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Total % of Variance Cumulative %

Initial Eigenvalues

Extraction Method: Principal Axis Factoring.

Page 1

Continue until the random 

eigenvalues exceed the 

eigenvalues obtained from 

the data.
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8.19

data

1.85

random

95th 

percentile

Eigenvalue 1

5.15

data

1.74

random

Eigenvalue 2

2.59

data

1.67

random

Eigenvalue 3

2.01

data

1.61

random

Eigenvalue 4

1.65

data

1.55

random

Eigenvalue 5

1.42

data

1.51

random

95th 

percentile

Eigenvalue 6
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Interpretation of Common Factor Analysis
Number of factors to retain

a. Eigenvalues > 1 rule

- Retain 11 factors

b. Scree Test

- Retain 3 factors

c. Parallel analysis test

- Retain 5 factors

Tabachnick & Fidell:

“Previous factor analytic work had indicated the presence of between 

three and five factors underlying the items of the BSRI. Investigation of 

the factor structure for this sample of women is a goal of this analysis.”

They retained 4 factors

We"ll retain 3 just to make naming easier...
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Interpretation of Common Factor Analysis
Type of rotation

• Decisions about the methods of rotation.

- In order to improve interpretability, the initial solution is rotated. A factor solution is 

easier to interpret if on a factor there are only a few highly loading variables and if 

a variable loads highly on one factor only. Since we don't know how the factors 

are related when we start, i.e. the degree of correlation between them, one 

suggestion is to get both the orthogonal and oblique solutions for each of the 

number of factors in the estimated range.

• Oblique

- The axes are rotated and are allowed to become oblique to each other. One 

procedure is the Oblimin method. The criterion is the same as for orthogonal 

rotation, that of simple structure. The pattern matrix and the correlations between 

the factors are interpreted. If the correlations between the factors are low then an 

orthogonal solution is about the same and is interpreted.

• Orthogonal

- The axes of the factor space are rotated keeping the axes at right angles 

(orthogonal). One procedure is a Varimax rotation. The axes are rotated to try and 

maximise the fit for the conditions. The rotated factor matrix, or structure matrix is 

interpreted.
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Interpretation of Common Factor Analysis
Type of rotation

Structure Matrix

.629 .252 -.187

.111 .462 -.322

-.275 .320 -.280

.170 .771 -.078

.187 .335 -.202

.126 .712 -.069

-.074 .157 .372

.721 .048 -.140

-.036 -.101 .426

.454 .142 -.214

-.018 .119 -.085

.025 .345 .016

.497 .092 .006

.455 .163 -.180

.048 .706 -.120

willing to take a stand

HAPPY

soft spoken

WARM

TRUTHFUL

TENDER

GULLIBLE

act as a leader

CHILDLIK

individualistic

use foul language

love children

competitive

ambitious

GENTLE

1 2 3

Factor

Extraction Method: Principal Axis Factoring. 
Rotation Method: Oblimin with Kaiser Normalization.

Factor Correlation Matrix

1.000 .143 -.106

.143 1.000 -.177

-.106 -.177 1.000

Factor

1

2

3

1 2 3

Extraction Method: Principal Axis Factoring.  
Rotation Method: Oblimin with Kaiser Normalization.

Page 33

There are low correlations among the factors (< .3), 

so there is no real need for an oblique rotation.

So choose an orthogonal solution... but it"s a 

judgement call and depends on the purpose.

Structure Matrix

.616 .287 .119 .219

.147 .177 .651 .139

-.262 .169 .379 .144

.187 .580 .667 -.115

.172 .346 .191 .183

.142 .534 .616 -.113

-.057 .099 .122 -.445

.729 .029 .070 .176

-.025 -.084 -.116 -.419

.451 .133 .112 .225

-.009 .054 .151 .034

.037 .244 .310 -.115

.531 -.020 .189 -.051

.474 .063 .230 .138

.061 .529 .612 -.063

willing to take a stand

HAPPY

soft spoken

WARM

TRUTHFUL

TENDER

GULLIBLE

act as a leader

CHILDLIK

individualistic

use foul language

love children

competitive

ambitious

GENTLE

1 2 3 4

Factor

Extraction Method: Principal Axis Factoring. 
Rotation Method: Promax with Kaiser Normalization.

Factor Correlation Matrix

1.000 .137 .106 .151

.137 1.000 .299 .011

.106 .299 1.000 .031

.151 .011 .031 1.000

Factor

1

2

3

4

1 2 3 4

Extraction Method: Principal Axis Factoring.  
Rotation Method: Promax with Kaiser Normalization.

Page 33

Note: T&F used a Promax 

rotation rather than Oblimin
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Interpretation of Common Factor Analysis
Interpretation of the factor solution

• Factors are named by choosing a phrase or definition 
that encapsulates the “common thread” amongst the 
high loading variables.

• The criterion for a high loading must be made explicit 
(> .3 is commonly used).

- Reminder: This is a highly subjective process!
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Interpretation of Common Factor Analysis
Interpretation of the factor solution

• Plotting the factors and making use of Point ID and 
spinning the factors can be helpful in interpretation.

- Though it"s not terribly useful for presenting data to the reader.

Factor 3
1.0

0.5
0.0 - 0 . 5- 1 . 0

F
a

c
t
o

r
 2

1 .0

0.5

0.0

- 0 . 5

- 1 . 0

Factor 1

1.0
0.5

0.0
- 0 . 5

- 1 . 0

Factor 31.0 0.5 0.0 - 0 . 5- 1 . 0

F
a

c
to

r 
2

1 .0

0.5

0.0

- 0 . 5

- 1 . 0

Factor 1

1.0
0.5

0.0
- 0 . 5

- 1 . 0

selfsuff
indpt

reliant
leaderab

conscien
leadact

helpful

assert

cheerful

risk

strpers

reliant

dominant

forceful

defbel

analyt

undstand

feminine

loyal

warm

helpful
athlet

assert

tender

cheerful

strpers

gentle

dominant

sensitiv

defbel

affect

warm

athlet

compasssoftspok tendergentle

sympathy

masculin

softspok
yielding

masculin

yielding

flatter

shy
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321

Factor

leaderab

leadact

strpers

dominant

forceful

assert

stand

compete

decide

risk

indpt

ambitiou

individ

defbel

shy

masculin

analyt

athlet

warm

tender

gentle

compass

undstand

soothe

affect

sympathy

sensitiv

loyal

happy

cheerful

helpful

lovchil

feminine

softspok

truthful

yielding

flatter

foullang

selfsuff

reliant

conscien

moody

childlik

gullible - . 3 9.20- . 0 6

- . 4 2- . 0 6.00

- . 4 4- . 1 1.06

.44.31.22

.50.10.37

.66.07.43

.08.12- . 0 3

- . 2 5.26.13

.09.30- . 1 6

.17.31.16

.27.32- . 3 1

.20.33.04

- . 0 4.35.01

.23.37.31

.27.40.12

.29.43.07

.03.51.20

.00.53.11

- . 0 3.57.00

- . 1 8.59.28

.00.61.08

.11.63.08

.02.69.11

.06.70.00

.01.71.08

.01.77.12

.04.07.28

.09.13.30

- . 1 1- . 2 6.32

- . 0 5- . 0 8- . 3 8

.00.21.43

.19.09.44

.15.12.44

.47- . 0 1.48

.06.16.48

.37.10.48

- . 0 3.06.50

.15.19.61

- . 0 3.06.66

- . 0 8- . 0 9.67

- . 0 5- . 2 3.69

- . 0 8.06.71

.11- . 0 2.72

.15.08.74

Rotated Factor Matrix
a

Extraction Method: Principal Axis Factoring.  
 Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

You need to 

select a cut point

(T&F chose .45)
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Factor

1 2 3

leadership ability 0.74 0.08 0.15

act as a leader 0.72 -0.02 0.11

strong personality 0.71 0.06 -0.08

dominant 0.69 -0.23 -0.05

forceful 0.67 -0.09 -0.08

assertive 0.66 0.06 -0.03

willing to take a stand 0.61 0.19 0.15

competitive 0.50 0.06 -0.03

makes decisions easily 0.48 0.10 0.37

willing to take risks 0.48 0.16 0.06

independent 0.48 -0.01 0.47

self sufficient 0.43 0.07 0.66

self reliant 0.37 0.10 0.50

affectionate 0.28 0.59 -0.18

loyal 0.20 0.51 0.03

warm 0.12 0.77 0.01

compassionate 0.11 0.69 0.02

sensitive 0.11 0.53 0.00

eager to soothe hurt feelings 0.08 0.61 -0.01

tender 0.08 0.71 0.01

understanding 0.08 0.63 0.11

sympathy 0.00 0.57 -0.03

gentle 0.00 0.70 0.06

Dominance

Independence

Empathy

Slight factorial complexity

You need to 

select a cut point

(T&F chose .45)
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Factor

leaderab

leadact

strpers

dominant

forceful

assert

stand

compete

decide

risk

indpt

ambitiou

individ

defbel

shy

masculin

analyt

athlet

warm

tender

gentle

compass

undstand

soothe

affect

sympathy

sensitiv

loyal

happy

cheerful

helpful

lovchil

feminine

softspok

truthful

yielding

flatter

foullang

selfsuff

reliant

conscien

moody

childlik

gullible - . 3 9.20- . 0 6

- . 4 2- . 0 6.00

- . 4 4- . 1 1.06

.44.31.22

.50.10.37

.66.07.43

.08.12- . 0 3

- . 2 5.26.13

.09.30- . 1 6

.17.31.16

.27.32- . 3 1

.20.33.04

- . 0 4.35.01

.23.37.31

.27.40.12

.29.43.07

.03.51.20

.00.53.11

- . 0 3.57.00

- . 1 8.59.28

.00.61.08

.11.63.08

.02.69.11

.06.70.00

.01.71.08

.01.77.12

.04.07.28

.09.13.30

- . 1 1- . 2 6.32

- . 0 5- . 0 8- . 3 8

.00.21.43

.19.09.44

.15.12.44

.47- . 0 1.48

.06.16.48

.37.10.48

- . 0 3.06.50

.15.19.61

- . 0 3.06.66

- . 0 8- . 0 9.67

- . 0 5- . 2 3.69

- . 0 8.06.71

.11- . 0 2.72

.15.08.74

Rotated Factor Matrix
a

Extraction Method: Principal Axis Factoring.  
 Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.
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