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e Assignment 2:

-  Due now.

e Final Exam

- 11 June 2:30pm, Room HEATH, UnionComplex.
- An exam guide and practice questions will be provided next week.

 Small Group Presentations



Kaleidoscope eyes: Anomalous visual

experiences in synaesthesia
Professor Jason Mattingley

-
-

- T . Wednesday, 13 May 2008 from 12-1pm
S McElwain Building, Room 317

Synaesthesia is an unusual phenomenon in which a stimulus in one sensory
modality elicits a vivid and involuntary perception in another modality. Thus, for
example, the sound of the letter "A" may induce a sensation of redness, or the
taste of roast chicken may feel jagged and angular. The phenomenon has
intrigued philosophers, cognitive scientists and neurologists for over a century,
yet little is known about its underlying neural and cognitive bases. In this talk |
will review the heterogeneous manifestations of synaesthesia, and provide
examples of subjective reports given by individuals with these unusual
perceptual experiences. | will then describe the results of a recent series of
laboratory experiments, in which we have identified a reliable cognitive marker
for the colour-graphemic form of synaesthesia. Our data show for the first time
that synaesthesia arises automatically, and that it cannot be suppressed even
when it is detrimental to task performance. | will conclude by providing a
tentative framework within which to understand the neural and cognitive bases
of synaesthesia, and offer some suggestions for future research.

e

.

-

A S -
\..

SO0E -
.‘A.'o
¥

-~



Factor Analysis via PCA

e QOverview

 The ‘number of factors’ problem
 The rotation problem
 Modelling data in factor analysis

 Schematic representation of factor
analysis via PCA

« SPSS




Consider an investigation into the nature of intelligence.

ability to recite song ability to hold two speed at completing
lyrics from memory conversations at once crosswords

ability to assemble ability to use a street speed at completing
something from IKEA directory jigsaw puzzles

What might be the ‘underlying factors’?



Participant

© 0O N o a A~ N =

N = = ek ek ek ek ek ek omd b
o O 0o N o o1 A W N = O

100

0.42 -0.35 0.38 -0.16 -0.62 0.52
-1.18 -0.53 -2.74 0.87 -0.61 0.51
0.67 1.44 -1.02 -1.11 -1.87 -0.54
0.27 0.26 1.66 0.81 0.58 1.29
0.1 0.25 -0.85 1.26 1.17 2.52
1.11 0.97 -1.66 1.30 0.79 2.60
0.54 0.43 -1.10 -1.51 -0.46 -1.96
0.50 1.72 2.25 -1.02 -0.97 -0.08
0.86 2.07 -0.40 -0.02 -0.30 -0.34
0.64 0.40 -0.56 1.42 1.31 1.95
-0.51 0.25 -0.05 0.39 0.25 -0.28
0.48 0.92 -0.95 -0.59 0.31 -2.62
0.54 1.13 0.1 -0.07 -0.74 0.12
-0.39 -0.92 -1.41 1.54 1.34 2.61
0.87 2.16 0.70 -0.83 -2.75 -1.41
-0.62 -1.88 -0.18 -0.32 -0.80 -1.00
1.80 0.44 1.68 0.90 1.38 0.08
0.65 -1.01 1.70 2.55 2.75 4.25
-1.42 -0.22 -2.00 -0.11 0.69 -1.00
0.29 0.87 -1.99 0.24 -0.37 -0.28
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11 lyrics -0.14 \Visible: 6 of 6 Variables !

| lyrics ] converse | crossword directory
-2.3300  -2.7500 1.8700

0.4200 -0.3500 0.3800 -0.6200
-1.1800 -0.5300 -2.7400 -0.6100
0.6700 1.4400 -1.0200 -1.8700
0.2700 0.2600 1.6600 0.5800
0.1100 0.2500 -0.8500 11700
1.1100 0.9700 -1.6600 0.7500
0.5400 0.4300 -1.1000 -0.4600
0.5000 1.7200 2.2500 -0.9700
0.8600 2.0700 -0.4000 -0.3000
0.6400 0.4000 -0.5600 1.3100
-0.5100 0.2500 -0.0500 0.2500
0.4800 0.9200 -0.9500 0.3100
0.5400 1.1300 0.1100 -0.7400
-0.3900 -0.9200 -1.4100 1.3400
0.8700 2.1600 0.7000 -2.7500
-0.6200 -1.8800 -0.1800 -0.8000
1.8000 0.4400 1.6800 ’ 1.3800
0.6500 -1.0100 1.7000 2.7500
-1.4200 -0.2200 -2.0000 0.6900
-0.3400 1.1000 -0.6500 -0.0100
0.3600 1.5500 -0.3200 3.5100
1.0400 1.2700 1.3100 0.9500
0.6200 0.7000 1.0800 13100
-0.3500 -1.2500 -0.4100 ; 0.5500
0.4100 -0.0600 -1.1800 3 -3.1900
-2.0600 -2.7000 -3.3000 ! -2.2800
-0.5600 0.8400 0.2100 . -1.3400
0.2600 -1.2400 0.9200 5 -0.6400
-1.3000 0.2400 -0.2500 X -0.7100
-0.5100 -0.9700 0.1700 2 0.0200
-0.4700 -3.3000 -0.8600 5 1.3400
0.0700 0.2000 2.1500 ) -0.3700
-0.8800 -1.8500 -1.2400 ! 0.8900
1.7400 2.1700 2.2800 ’ 1.6400
-0.0600 0.8700 0.4300 i -1.1500
-0.7100 0.0100 -1.3100 X -1.2000
0.5600 2.1900 2.3600 A 0.5100
-0.7100 0.3400 -0.4500 A 0.2000
-0.1500 -0.7900 -1.4600 5 -1.1500
1.5600 2.1000 2.9800 A -1.6800
0.4100 1.8600 0.0200 , -0.0600
-1.0400 -1.7800 -1.9700 ; -0.2200
0.7700 0.2000 3.0300 s -1.8300
-1.4000 -1.6100 -1.2800 3 -0.0300
0.0300 0.9200 0.2600 X -0.2700
-0.2500 -0.0900 1.2100 A -2.9200
-0.8700 0.3700
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|SPSS Processor is ready|




Limitations

* Tabachnick and Fidell (2007, p. 612; Section 13.3.2)
discuss the practical issues with PCA, especially the
need to have honest, reliable correlations. Of course,
checking the effect of transformations of the data on
the interpretations is crucial. In order to check if the R
matrix is ‘usefully’ factorable, there needs to be
several large correlations among the variables.
Generally, the percentage of variance accounted for is
also a guide.



PCA using SPSS

* |tis important to not rely on the default values in the
SPSS Factor procedure. There are many choice
points and it is crucial that you exercise control.
Further, it is unlikely that an appropriate analysis
would be completed in a single run of the FACTOR
procedure. The instructions below result from
knowledge gained from earlier runs. The method of
extraction is Principal Components, the number of
“factors” is specified to be two (2) and the rotation
method is orthogonal using the Varimax method.



Graphs Utilities

Reports

Descriptive Statistics
Tables

Compare Means
General Linear Model
Ceneralized Linear Models
Mixed Models
Correlate

Regression

Loglinear

Classify

Data Reduction

Scale

Nonparametric Tests
Time Series

Survival

Missing Value Analysis..

Multiple Response
Quality Control
ROC Curve...

Add-ons Window Help

| 2

>

>

>

>

>

>

>

>

>

>

3 /A Factor...

> Correspondence Analysis... ‘
» (= Optimal Scaling... |
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Method: [ Principal components

~Analyze

) Correlation matrix

() Covariance matrix

Display
g Unrotated factor solution
E Scree plot

~Extract

() Eigenvalues over:

® Number of factors:

Maximum Iterations for Convergence: 25 f

®

( Cancel ) w

( Descriptives...

ability to recite son...
ability to hold two c... ( Extraction...
+ speed at completin...
ability to assemble ... ( Rotation...
#" ability to use a stre...
speed at completin... (

( Options...

Scores...

Selection Variable:

ORI
( value... )

@ ( Reset ) ( Paste )

~Method

() None () Quartimax
) Varimax () Equamax

() Direct Oblimin () Promax
Delta: 0 Kappa 4

~Missing Values

) Exclude cases listwise
() Exclude cases pairwise
() Replace with mean

~Coefficient Display Format
e Sorted by size

[ Suppress absolute values less than: 10

~Display
M Rotated solution M Loading plot(s)

Maximum Iterations for Convergence: 25

@ (" Cancel ) ( Continue ) @ (" cCancel ) ( Continue )




FACTOR
/VARIABLES lyrics converse crossword ikea directory jigsaw
/MISSING LISTWISE
/BANALYSIS lyrics converse crossword ikea directory jigsaw
/PRINT INITIAL EXTRACTION ROTATION
/FORMAT SORT

/PLOT EIGEN ROTATION Note: a prior analysis (and the fact
/CRITERIA FACTORS(2) ITERATE(23) that the data were simulated with a
/EXTRACTION PC -

/CRITERIA ITERATE(25) known structure) indicated that 2
/ROTATION VARIMAX factors would be rotated.

/METHOD=CORRELATION.

/VARIABLES subcommand: specifies the variables to be used in the analysis.

/FORMAT subcommand: specifies that the loading matrix in the output will be
sorted which enables, most times, easier reading of the matrix.

/PRINT subcommand: specifies the default output, plus the correlation matrix
and means and standard deviations.

/PLOT subcommand: specifies a plot of components 1 and 2 after rotation.

e /EXTRACTION subcommand: specifies that the method of extraction to be PC,
principal components.

e /ROTATION subcommand: specifies that the Varimax criterion be used to
orthogonally rotate the number of factors specified in the criteria subcommand or
using the default that the number of factors to be rotated is the number with
eigenvalues greater than 1.

10



Deciding the number of “factors” to retain

Total Variance Explained

Initial Eigenvalues
Component Total % of Variance | Cumulative %
1 2.546 42.442 42.442
2 2.020 33.665 76.107
3 511 8.509 84.615
4 .489 8.154 92.769
5 .253 4.209 96.978
6 .181 3.022 100.000

Extraction Method: Principal Component Analysis.

The Initial Eigenvalues for each component are the elements of the diagonal

matrix, L. From the eigenvalues, a decision about the number of “factors” to retain is
made. In this example, it is very clear that two components are sufficient to explain
the great majority of the total variance, 76% of the total variance.

o | .511/6 = 8.509%

o | .489/6 = 8.154%

o | .253/6 = 4.209%

1 2 3 4 5 6
0 0
0 0
0 0
049 | O
0 |0.25
0 0

0.18 ,181/6 = 3.022%

o 2.546/6 = 42442% | . o,
o | 2.020/6 = 33.665%

11



Eigenvalue

Scree Plot

The plot looks like the side of a mountain,
and “scree” refers to the debris fallen
from a mountain and lying at its base.

The scree test proposes to stop analysis
at the point the mountain ends and the
debris begins.

Scree Plot
3.0
2.8
2.5
2.0 2.1
o))
1.5 %
> 14
c
Q
1.0 o
11]
0.5 0.7
0.0
T T T T T T 0
1 2 3 4 5 6

Component Number

Component
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}&rotated

1

2

0.23

0.88

0.00

0.83

-0.08

0.84

% \?’.i
N1 0.94

-0.07

0.82

0.28

0.84

-0.04

The factor loading matrix

Rotated Component Matrix

Component

1 2
ikea .939 -.071
jigsaw .835 -.044
directory .818 .280
lyrics 229 .885
crossword -.084 841
converse .004 .825

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

The first Component Matrix is the unrotated matrix, A. This is not
interpreted. Orthogonal rotation using the Varimax method was specified
and this Rotated Component Matrix (A otated) IS interpreted. In this
clear-cut example, it is easy to see that the variables load very
highly on Component 1 and the variables load highly on
Component 2. The Sums of Squared Loadings (SSLs) for the rotated
components are given in the table headed ‘Rotation Sums of Squared
Loadings’.

T&F: If simple structure is present, the columns will have several high
and many low values, while the rows will only have one high value.
Rows with more than one high correlation correspond to variables that

are “complex” because they reflect the influence of more than one factor.

13



Rotation Sums of Squared Loadings

Total Variance Explained

Rotation Sums of Squared Loadings
Component Total % of Variance | Cumulative %
1 2.309 38.478 38.478
2 2.258 37.628 76.107
3
4
5
6

Extraction Method: Principal Component Analysis.

Arotated

1 2

The Sums of Squared Loadings (SSLs) for the rotated components are
given in the table headed ‘Rotation Sums of Squared Loadings’.

023 | 0.88
2.309/6 = 33.478% | - |10
0.00 | 0.83 2.258/6 — 37.628%

-0.08 0.84
0.94 -0.07
0.82 0.28
0.84 | -0.04 Unrotated Solution Rotated Solution
(orthogonal)
2.309 2.258

14



Communalities

The table labelled ‘Communalities’ has a column called
‘Extraction’. For an orthogonal solution, these are the

Communalities

sums of squared loadings for each variable. For an nitial ] Extraction
oblique solution, communalities are obtained using a lyrics 1888 2:?
. . converse . .
regression approach that takes into account the crossword | 1.000 15
correlations among the components or factors. Ikea 1.000 .887
directory 1.000 .748
The communalities for each variable are the sums of jigsaw 1.000 .700
. Extraction Method: Principal Component Analysis.
squares of the rows of the component matrix, unrotated
or rotated.
Arotated
1 2 h2
023 | 088 0836 Y a’ = 23"+ .88° = 836
0.00 | 0.83 | 0.681 That is, 83.6% of the variance in
‘lyric recall’ is accounted for by
.0.08 | 084 | 0714 Factor 1 plus Factor 2.
This gives us an indication of how
0.94 | -0.0710887 | 130 ‘lyric recall’ has in common
with the two factors.
0.82 | 0.28 | 0.748
0.84 | -0.04 | 0.699
Sum of Square Loadings 231 226 4.564
/6 38.5% 37.6% 76.11%

Za2 — 2324+ 002+ —.082 + 942 + 822 4+ 842 =231 =)\

15



Extraction Sums of Squared Loadings

Total Variance Explained

Extraction Sums of Squared Loadings

Rotation Sums of Squared Loadings

Initial Eigenvalues
Component Total % of Variance | Cumulative %
1 2.546 42.442 42.442
2 2.020 33.665 76.107
3 511 8.509 84.615
4 .489 8.154 92.769
5 .253 4.209 96.978
6 .181 3.022 100.000

Total
| 2.546
w1 2.020

% of Variance
42.442

33.665

Cumulative %
42.442

76.107

Total % of Variance | Cumulative %
2.309 38.478 38.478
2.258 37.628 76.107

Extraction Method: Principal Component Analysis.

Because a PC model was specified, the eigenvalues and percentage of variance
explained in the ‘Extraction sums of squared loadings’ part of the “Total Variance
Explained Table’ are the same as for the initial eigenvalues. However, after rotation,

these SSLs change and are called ‘Rotation Sums of Squared Loadings’. These are
reported in an interpretation.

16




Component 2

Loading Plots

Component Plot in Rotated Space

1.0
1.07 lyrics
crosswordO cc)n MA@ 0.8
0.5 0.6
directory
©)
0.4
0.0 “oqiﬂ(l)'rkea—
Al 0.2
S
-0.57 8 0
L
-0.2
-1.0
-1I.0 -0|.5 0.0 0!5 1!0 -04
Component 1
These are useful when two or three factors are 0.6
rotated. When two components or factors are
rotated SPSS produces a two-dimensional plot. 08 u
For three components/factors, SPSS produces a 10
plot that can be ‘spun’ to illustrate the patterns in 025 0 025 050 075 1.00
the loadings. It’s helpful to add lines as SPSS only Factor 1

lots the labelled points. '
plots the labelled points Rotated Solution

(orthogonal)



Common Factor Analysis

 Types of factor analysis

 The common factor model

 FEuler representation

* Modelling the data in factor analysis
* The principal axis factoring method
* Schematic links in factor analysis

18



Common Factor Analysis

Introduction

We have introduced the full principal
components analysis in which the
original variables are transformed via a
linear combination into the same number
of uncorrelated components. The aim for
a common factor analysis is the same as
for factor analysis via PCA. The
objective of a factor analysis is to
develop a model that makes substantive
sense and describes the data to a
reasonable extent.

19



Types of factor analysis

* Factor Analysis via PCA

- uses The Principal Components Model

 Common Factor Analysis
- uses The Common Factor Model

The choice of factor model depends on a researcher’s
assumptions about the nature of the variance for a variable.

20



The Common Factor Model
Common Variance

Factor analysis seeks to explain the correlation among the variables.
The Common Factor Model assumes that the variation in the scores
of individuals on a variable has two sources:

a. Common Variance

This is part of the variance for a variable
due to the assumption that it has
something in common with at least one

) ) of the other variables in the analysis.
Vi v Vs V. Ve Ve Anc_>ther way of stating this is that the
variance is due to common factors, F’s,

which are latent (i.e. unobserved)
variables that influence the scores on
more than one of the observed variables.
This leads to a model for the data called
the common factor model.

21



The Common Factor Model
Common Variance

Factor analysis seeks to explain the correlation among the variables.
The Common Factor Model assumes that the variation in the scores
of individuals on a variable has two sources:

b. Specific Variance

This is due to influences that are specific
to one variable and affect no other
variable. These influences include both
pure error variance and unigue variance
that is reliable but specific to a to a single
variable. These latter types cannot be

Vi % V3 Vy Vs Ve
disentangled from each other so they are
@ @ lumped together into a single latent
factor that is unique to just one measure,

(the E’s).

The objective of a common factor analysis is to identify
the latent factors underlying the common variance.

22



The Common Factor Model
Common Variance (example)

Need for
Achievement

A 4

Perseverance Industriousness Perfectionism

® © ©

It’'s assumed that these three measures of personality correlate is
because they are predicted from a “common cause” (need for
achievement), the factor in this example, is not a variable that is
actually measured. Rather this factor is thought of as the sum of

the parts of the variables measured to study it.

23



Hypothesised parts of the
variance of a variable

Error
Variance

Unique
Variance

Common
Variance

24



The Common Factor Model
An Euler representation

Consider six variables that are intercorrelated.

25



The Common Factor Model
An Euler representation

Consider the overlap between the six variables

26



The Common Factor Model
An Euler representation

Underlying constructs should only be related
to the common variance



The Common Factor Model
An Euler representation

Need for
Achievement

Y

Perseverance Industriousness Perfectionism

® © ©

For example, “Need for Achievement” should only be
related to what’s common among “Perseverance”’,
“Industriousness”, and “Perfectionism”




The Common Factor Model
An Euler representation

So to find underlying constructs, we’re only
interested in the common variance.

29



The Common Factor Model
An Euler representation

So only the common variance is factor analysed

30



The Common Factor Model
An Euler representation

We need to know the size of
the common variance before
we can factor analyse it!

So we need to know how many
factors we’re going to retain to
get the commonalities.

BUT we can’t decide how
many factors to retain until
we do a factor analysis!

The size of the common
variance is given by the
communalities.

BUT the communalities change

depending on how many factors
we retain.

But there’s a BIG problem...

31



The Common Factor Model
An Euler representation

Interpretation is basically the
same as for factor analysis
via PCA.

The number of factors is
decided upon.

The type of rotation (orthogonal
or oblique) is decided upon.

Once that problem has been solved...

32



Modelling the data in Common Factor Analysis

Use Regression

In the definition of communalities in factor analysis via principal
components analysis each variable was considered as being a
linear combination of the factors.

Communalities

Consider the previous regression equation:
Zj — FlFQFm

There’s an R2 value for each variable.

- How much of the variance of a variable is accounted for by the factors.
- How much the variable has in common with the factors.

It is called the communality of the variable, h?. O
For orthogonal solutions,

2 g2 4., 2
hi =aj; + - +aj,
The sum of squared loadings

Recall from last lecture...

33



Modelling the data in Common Factor Analysis

Participant

© 00 N O g &~ W N =

J T S S S G e G Gy
o © 0 N O o & W N =+ O

100

Use Regression

Participant

1.45 -0.16 1
0.50 0.19 0.31 0.07 0.28 0.37 2
1.22 0.32 1.77 0.93 0.28 0.37 3
0.77 1.10 0.62 -0.99 1.15 -0.30 4
0.34 0.25 1.16 0.87 0.55 0.86 5
0.17 0.24 0.51 1.31 0.96 1.65 6
1.24 0.76 1.05 1.35 0.70 1.70 7
0.63 0.37 0.68 -1.38 0.17 -1.21 8
0.59 1.30 1.56 -0.90 0.53 -0.01 9
0.97 1.55 0.21 0.07 0.06 -0.18 é 10
0.74 0.35 0.32 1.47 1.06 1.28 11
0.50 0.24 0.02 0.47 0.32 -0.14 12
0.56 0.72 0.58 -0.49 0.36 -1.63 13
0.63 0.87 0.13 0.02 0.37 0.12 14
0.37 0.60 0.88 1.58 1.08 1.70 15
0.98 1.62 0.52 -0.72 1.77 -0.86 16
0.62 1.29 0.06 -0.22 0.41 -0.60 17
1.98 0.38 1.18 0.96 1.1 0.09 18
0.75 0.67 1.19 2.56 2.06 2.75 19
1.47 0.10 1.28 -0.02 0.63 -0.60 20
0.36 0.69 -1.27 0.32 -0.11 -0.14 100

1 2
0.96 -1.25
0.02 0.20
0.51 -1.38
-0.87 0.46
0.79 0.59
1.52 -0.17
1.55 0.20
-1.01 0.29
-0.71 1.33
-0.05 0.87
1.50 0.18
0.21 -0.10
-0.63 0.44
-0.09 0.58
1.73 -0.84
-1.28 1.14
-0.43 -0.72
0.82 1.36
2.76 0.29
0.01 -1.00
0.14 -0.12

Zj %FlFQFm

aleil 4+ ...+ aijim -+ €ij

a1l +az1Fi2 +eix
ai2kFi1 + azaFi2 + €2
aizki1 + azsFi2 + €3
a1akFi1 + agz4Fi2 + ey
aisFi1 + azsFi2 + €5
a1 + azeFi2 + €i6
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Modelling the data in Common Factor Analysis
Modelling the scores on each variable

Scores on a variable can be predicted from scores on the factors.

/ H}71}72}77”

So for each variable:

Zii=aj1Fpn+ ...+ ajmEim + €

Scores = explained -+ unexplained
by factors by factors
DATA = MODEL -+ RESIDUAL

35



Modelling the data in Common Factor Analysis
Modelling the variance of each variable

var(Z) = var(regression)+var(error)

1 — h2 -+ u2

Total __ Common 4 Specific variance
variance variance (unique + error)
DATA = MODEL + RESIDUAL

36



Correlation matrices used in factor analysis

Rfun

1 The full correlation
1 matrix used in PCA

of each variable

The reproduced correlation matrix

1 = the total variance

Rfull — Rreproduced ‘|‘ Rresidual
= \ Ve = N Ve B Ve
(DERCERN Y (DR RN (DEREC Ry
’ VG B\ ! VG b\’ N VEY (bt &
) B
1 0.64 | 0.65 | 0.15 | 0.40 | 0.14 | 'h' 0.84 | 0.73 | 0.73 | 0.15 | 0.44 | 0.15 {\"' 0.16 | -0.09 | -0.07 | -0.00 | -0.03 | -0.02
0.64 1 0.49 | -0.04 | 0.19 | -0.01 0.73 | 0.68 | 0.69 | -0.05 | 0.23 | -0.03 -0.09 | 0.32 | -0.20 | 0.02 | -0.04 | 0.03

0.65 | 0.49 1 -0.13 | 0.15 | -0.04 -0.07 | -0.20 | 0.29 | 0.01 | -0.02

0.73 | 0.69 | 0.71 | -0.14 | 0.17 | -0.11 —I—

0.07

0.15 | -0.04 | -0.13 1 0.71 | 0.70 0.15 | -0.05 | -0.14 | 0.89 | 0.75 | 0.79 -0.00 | 0.02 | 0.01 | 0.11 | -0.04

-0.09

0.40 | 0.19 | 0.15 | 0.71 1 0.47 0.44 | 023 | 0.17 | 0.75 | 0.75 | 0.67 -0.03 | -0.04 | -0.02 | -0.04 | 0.25

-0.20

wDE
WD

0.14 | -0.01 | -0.04 | 0.70 | 0.47 1 0.15 | -0.03 | -0.11 | 0.79 | 0.67 | 0.70 -0.02 | 0.03 | 0.07 | -0.09 | -0.20

0.30

lsCd0se

Note: The closer that these reproduced correlations match the original correlations, the
better the factor analysis captured the relationship among the variables. This difference
comes out in the residual correlations. The goal is to get these as small as possible.

Recall from last lecture...

In factor analysis via principal components
analysis the correlation matrix was ‘factored’.
The total variance was ‘repackaged’. The full

correlation matrix contains 1’s on the diagonal.

This is the variance of each standardised
variable.
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Correlation matrices used in factor analysis
Reunn

The full correlation
matrix used in PCA

1 = the total variance
of each variable

_|_

p
o

WD

Rresidual
/“‘/

)
4

2

Rreduced
n? The reduced correlation
5 matrix used in PCA
i . h? = the communalities
|| of each variable
hg

0.16

0.09

-0.07

-0.00

-0.03

-0.02

-0.09

0.32

-0.20

0.02

-0.04

0.03

-0.07

-0.20

0.29

0.01

-0.02

0.07

-0.00

0.02

0.01

0.1

-0.04

-0.09

-0.03

-0.04

-0.02

-0.04

0.25

-0.20

-0.02

0.03

0.07

-0.09

-0.20

0.30

1
1
1
1
1
1
Reun — Rreproduced
DEEY; FECHOM
u}/ g ,',j/{:)\w [\&}J *C ,b\/)
(/;\ 1 | 064|065 015|040 | 0.14 ’/'D 084 [ 073 | 0.73 | 0.15 | 0.44 | 0.15
; 064 | 1 |o049 |-004| 019 |-001 0.73 | 0.68 | 0.69 | -0.05| 023 | -0.03
4 4
Q 065|049 | 1 |-013| 015 |-004| — C 073 | 069 | 0.71 | -0.14| 047 | -0.11
ﬁ‘h 015 |-004 [-043| 1 | 071|070 é.h 015 | -0.05 | -0.14 | 0.89 | 0.75 | 0.79
‘/%n 040 | 019 | 045 | 071 | 1 | 047 (/{, 044 | 023 | 017 | 0.75 | 075 | 067
-4 o
g 014 | -0.01 | -0.04| 070 | 0.47 | 1 ( 015 [0.03 | -0.11 | 0.79 | 067 | 0.70
& A
~———

Note: The closer that these reproduced correlations match the original correlations, the
better the factor analysis captured the relationship among the variables. This difference
comes out in the residual correlations. The goal is to get these as small as possible.

Recall from last lecture...

In a common factor analysis only the common
variance is desired to be factored and it is this
common variance that is placed on the
diagonal of the correlation matrix. This matrix is
called the reduced correlation matrix with the
communalities in the diagonal. It is factored
and the eigenvalues and eigenvectors of this
reduced matrix are found and form the basis of
the common factor solution.
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Factor indeterminacy problem

The communality is the variance of the variable that it has in common with the other
variables. We need to determine the proportion of each variable’s total variance that is
common variance. The estimate of the communality depends on the number of factors in
the model. So we either need to know the communality or the number of factors to be
able to get a solution. Unfortunately, these are unknown prior to the factor analysis. This
IS sometimes called the factor indeterminacy problem.

Arotated

1

2

h2

0.23

0.88

0.836

== | 0.00
L)

0.83

0.681

» ) 008

0.84

0.714

S | 0.04

-0.07

0.887

0.82

0.28

0.748

0.84

-0.04

0.699

Sum of Square Loadings 2.31

/6 38.5% 37.6% 76.11%

2.26

4.564

the BIG problem

The name for

Za2 = .23% + .88%2 = .836

That is, 83.6% of the variance in
‘lyric recall’ is accounted for by
Factor 1 plus Factor 2.

This gives us an indication of how
much ‘lyric recall’ has in common
with the two factors.

fo =232 4+ .00% + —.08% 4+ .94% + 822 + 842 =231 =\,

Recall from last lecture...

One way of solving this problem is called:

Principal axis factoring (paf)...
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Principal axis factoring (paf)

* This method solves the problem by starting with initial
estimates of the communality together with an estimate
of the number of factors.

* An initial estimate of the communality for a variable is
the square multiple correlation (SMC) of that variable

being predicted from the other variables in the analysis:

71 — Zo...Zy R} = initial A3
2 ey g 2
Zp — Zl .. Zp—l Rp — |nitial h;

This provides an estimate of how much variance a
variable has in common with the other variables.
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Principal axis factoring (paf)
The paf procedure

Estimate the number of factors from the Singular Value Decomposition (SVD) of
the Rfull matrix;

get an initial estimate of the communalities from the squared multiple correlations;
insert these into the diagonal of the R, correlation matrix;
factor the reduced matrix (Ryeduced) ;

using the estimate of the number of factors, calculate the communalities from this
solution using the sum of squared loadings of the unrotated matrix of factor
loadings, A ;

insert the new estimates in the diagonal of the correlation matrix to form a new
reduced correlation matrix and factor this new matrix;

Repeat this process until there is very little change in the communality estimates.

Once an unrotated factor matrix is found, the procedure is
the same as for factor analysis via principal components.
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1
1

Rreduced

p

Decide on the
number of factors
to retain = m

get an initial
estimate of h?
from the SMCs

Insert #2in

diagonal

m h2

—

Yes

Very small

n h? ?J

change i

N

No

Repeat
until the
change
IS small.

Principal axis factoring (paf)
The paf procedure
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Using SPSS for Common Factor Analysis

Research Question and Design

From T&F (p. 651): During the second year of the panel study described in
Appendix B Section B.1, participants completed the Bem Sex Role Inventory
(BSRI; Bem, 1974). The sample included 369 middle-class, English-speaking
women between the ages of 21 and 60 who were interviewed in person.

Forty-five items from the BSRI were selected for this research, where 20 items
measure femininity, 19 masculinity, and 5 social desirability. Respondents
attribute traits (e.g., “gentle”, “shy”, “dominant”) to themselves by assigning
numbers between 1 (“never or almost never true of me”) and 7 (“always or
almost always true of me”) to each of the items. Responses are summed to
produce separate masculine and feminine scores. Masculinity and femininity are
conceived as orthogonal dimensions of personality with both, one, or neither
descriptive of any given individual.

Previous factor analytic work had indicated the presence of between three and
five factors underlying the items of the BSRI. Investigation of the factor structure
for this sample of women is a goal of this analysis.
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Using SPSS for Common Factor Analysis

Data Diagnostics

 T&F identified 25 cases that might be considered outliers using a criterion of
a = .001 with 44df, critical x2 = 78.75 of the Mahalanobis distance.

 Even though we should run the analysis with and without these outliers and
compare the data, we’ll eliminate these 25 cases so you can compare these
numbers with those obtained by T&F.

® OO0 -+ factor.sav [DataSet2] — SPSS Data Editor
ODHE N o LREPR &H-IE E2E
ey [ (2% ER . B | - y @
1 : filter_$ 1.0 Visible: 48 of 48 Variables
subno helpful reliant defbel yielding cheerful indpt athlet shy assert strper
1 1 7 7 5 5 7 7 7 1 7 ‘
2 2 5 6 6 6 2 3 3 3 4 Q'
3 3 7 6 4 4 5 5 2 3 4
4 4 6 6 7 4 6 6 3 4 4
5 5 6 6 7 4 7 7 7 2
6 7 5 6 7 4 6 6 2 4 4
7 8 6 4 6 6 6 3 1 3 3
- 9 7 6 7 5 6 7 5 2 5
5 10 7 6 6 4 4 5 2 2 5
10 11 7 4 7 4 7 5 2 1 5
11 1 7 7 7 4 6 7 1 3 6
12 14 7 7 5 5 7 1 3 5 6
13 1 Z 7 7 7 7 7 7 1 7
14 2 5 6 7 5 6 6 1 1 6
| 25 6 B 7 4 4 7 7 1 5
16 26 6 6 5 5 7 6 2 2
17 27 7 7 7 6 6 7 1
18 28 7 6 7 7 6 S 4
19 29 7 S 7 3 4 S 4 4 4
e i 30 6 6 7 4 5 6 4
21 31 6 6 4 4 4 4 6 4 4
T 29 c £ £
G E————
| Data View  Variable View
SPSS Processor is ready Filter On
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Using SPSS for Common Factor Analysis
SPSS Syntax

FACTOR
/VARIABLES helpful reliant defbel yielding cheerful indpt athlet shy assert
strpers forceful affect flatter loyal analyt feminine sympathy moody
sensitiv undstand compass leaderab soothe risk decide selfsuff conscien
dominant masculin stand happy softspok warm truthful tender gullible leadact
childlik individ foullang lovchil compete ambitiou gentle
/MISSING LISTWISE
/PRINT INITIAL REPR KMO EXTRACTION ROTATION
/FORMAT SORT
/PLOT EIGEN ROTATION
/CRITERIA FACTORS(3)
/EXTRACTION PAF
/ROTATION VARIMAX
/METHOD=CORRELATION .

You exert control here

You need another run to get
an obligue rotation solution
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Interpretation of
Common Factor Analysis

* Choice of factor model.

* Factorability and other assumptions.
 Number of factors to retain.

 Type of rotation.

* The interpretation of the factor solution.

 Adequacy of the factor solution.
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Interpretation of Common Factor Analysis
Choice of factor model

* |f your goal is to summarise patterns and/or reduce data.

- Factor analysis via Principal Components Analysis is appropriate.

 |f your goal is to identify underlying constructs.

- Common factor analysis is appropriate.

For this analysis, it’s believed that constructs
of masculinity and femininity underlie the
data, so a common factor analysis is used.




Interpretation of Common Factor Analysis
Factorability and other assumptions

Correlations

[ helpful | reliant | defbel | yielding | cheerful | indpt | athlet
helpful 1.000 .337 .239 114 220 271 173
reliant .337 1.000 145 -.012 247 514 147
defbel .239 145 1.000 -.078 102 211 .066
yielding 114 -.012 -.078 1.000 181 -.034 .053
cheerful 220 247 102 .181 1.000 .186 .181
indpt 271 514 211 -.034 .186 1.000 161
athlet 173 147 .066 .053 .181 161 1.000

Looking through the 44 x 44 variable correlation matrix (part shown above), there are
several large correlations (many in excess of .3), therefore patterns in responses to the
variables are anticipated.



Interpretation of Common Factor Analysis
Factorability and other assumptions

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling

Adequacy. .852

Bartlett's Test of Approx. Chi-Square 5954.22

Sphericity df 946
Sig. .000

The KMO measure is also available. It’'s a measure of the proportion of variance in
your variables which is common variance. High values (close to 1) indicate that a factor
analysis may be useful. If this value drops below .5, then an FA may not be so useful.

Bartlett’s test of sphericity tests the null hypothesis that your correlation matrix is an
identity matrix, which would indicate that the variables are completely uncorrelated. Of
course you should expect to find some factors because of the conceptual design of the
study, so this check is a bit redundant.

Skewness, outliers, linearity, multicollinearity are all potential issues in the sense that
they affect the honesty of the correlations. (See T&F’s treatment of these in this
particular case: p. 652). There is no statistical inference in factor analysis, so normality
isn’t an issue, but honest correlations are!



Interpretation of Common Factor Analysis
General strategy for handling number of factors and rotation

The overall strategy for handling the number of factors to retain and the type of
rotation to use is to generate a number of factor solutions from the range of possible
values for the number of factors and from the two types of rotation.

The best of these factor solutions is used where “best” is defined as the most
interpretable solution that meets the needs of the researcher.

It’s highly unlikely that a solution will emerge in a single run of SPSS FACTOR.

Deciding on the number of factors is crucial and no method
can give a ‘correct’ answer. The information for deciding the
number of factors is in the initial statistics section of the output.
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Interpretation of Common Factor Analysis
Number of factors to retain

This is the default in SPSS
FACTOR and is not
necessarily (almost certainly
NOT) the best. It generally
gives the maximum number of
interpretable factors.

Total Variance Explained

Cumulative %

Initial Eigenvalues
Factor Total % of Variance
1 8.194 18.623
2 5.154 11.713
3 2.590 5.887
4 2.073 4.711
> 1.648 3.744
6 1.415 3.216
/ 1.291 2.933
8 1.221 2.775
9 1.110 2.522
10 1.078 2.449
11 1.032 2.345
12 951 2.162
13 942 2.140

18.623
30.335
36.223
40.934
44.678
47.895
50.828
53.604
56.125
58.575
60.919
63.081
65.221

Initial Eigenvalues e
Factor Total % of Variance _Q[Iﬁ%ulative %
1 8.194 18.623" 18.623
2 5.154 L1713 30.335
3 2.590 |~ 5.887 36.223
4 2,078 4.711 40.934
s 1.648 3.744 44.678
6 1.415 3.216 47.895
7 1.291 2.933 50.828
"8 1.221 2.775 53.604
9 1.110 2.522 56.125
10 1.078 2.449 58.575
11 1.032 2.345 60.919
12 951 2.162 63.081
13 942 2.140 65.221
14 882 2.004 67.225]
15 863 1.962 69,188
16 828 1.883 #1070
17 770 1.751 < 72.821
18 750 1.704 74.525
19 737 1.675. 76.200
20 690 1.569 77.769
21 652 17481 79.250
22 646 1.468 80.718
23 626 1.423 82.141
24 587, 1.335 83.476
25 571 1.298 84.774
26 550 1.249 86.023
27 513 1.166 87.189
28 501 1.138 88.327
29 474 1.078 89.405
30 440 1.001 90.406
31 435 .990 91.395
132 392 890 92.286
33 368 835 93.121
34 366 831 93.952
35 .350 .795 94.747
36 330 751 95.498
37 319 725 96.223
38 302 685 96.909
39 287 653 97.562
40 260 .590 98.152
41 250 .568 98.720
42 230 524 99.244
43 207 470 99.713
44 126 287 100.000

Extraction Method: Principal Axis Factoring.
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Interpretation of Common Factor Analysis
Number of factors to retain

b. Scree Test

Discontinuities and changes in
slope are used to indicate the
range of values for the number
of factors.

Eigenvalue

Scree Plot

10—

Change in slope about here.
/ Therefore retain 3 factors.

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Factor Number
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Interpretation of Common Factor Analysis
Number of factors to retain

Parallel analysis test

Behavior Research Methods, Instruments, & Computers
2000, 32 (3), 396-402

SPSS and SAS programs for
determining the number of components
using parallel analysis and Velicer's MAP test

BRIAN P. OCONNOR
Lakehead University, Thunder Bay, Ontario, Canada

Popular statistical software packages do not have the proper procedures for determining the number
of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum
average partial (MAP) test are validated procedures, recommended widely by statisticians. However,
many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-
greater-than-one rule. Use of the proper procedures might be increased if these procedures could be
conducted within familiar software environments. This paper describes brief and efficient programs
for using SPSS and SAS to conduct parallel analyses and the MAP test.

http://people.ok.ubc.ca/brioconn/nfactors/nfactors.html
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Interpretation of Common Factor Analysis
Number of factors to retain

Parallel analysis test

If our data were random, the size
of the eigenvalues would be due
to chance alone.

If our factors are meaningful, our
observed eigenvalues should be
bigger than that expected by
chance.

So we can check whether our
factors are useful by checking
whether they have bigger
eigenvalues than factors from
random data.

* Parallel Analysis program.
set mxloops=9000 printback=off width=80
seed = 1953125.

matrix.

* enter your specifications here.

compute ncases = 344.
compute nvars = 44,
compute ndatsets = 1000.
compute percent = 95.

* Specify the desired kind of parallel
analysis, where:

1 = principal components analysis

2 = principal axis/common factor analysis.
compute kind = 1

****************** End of user Specifications. R R R R R R R

* principal components analysis.

do if (kind = 1).

compute evals = make(nvars,ndatsets,-9999).

compute nml = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*
cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nml * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqgrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* principal axis / common factor analysis with SMCs on the diagonal.
do if (kind = 2).

compute evals = make(nvars,ndatsets,-9999).

compute nml = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

~Amriita v — a~nv+ LD % [ Inliand FAarm/inAacace nyrare V) x 1\ AN o 3
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C.

Interpretation of Common Factor Analysis

Parallel analysis test

Total Variance Explained

Number of factors to retain

Initial Eigenvalues

Factor Total % of Variance | Cumulative %
1 8.194 18.623 18.623
2 5.154 11.713 30.335
3 2.590 5.887 36.223
4 2.073 4.711 40.934
5 1.648 3.744 44.678
6 1.415 3.216 47.895
7 1.291 2.933 50.828
8 1.221 2.775 53.604
9 1.110 2.522 56.125
10 1.078 2.449 58.575
11 1.032 2.345 60.919
12 951 2.162 63.081
13 942 2.140 65.221

Random Data Eigenvalues

Root Means

1.762089
1.6794
1.613712
1.561228
1.512086
1.46828
1.427712
1.389664

0o 4 o Uk W N =

Prcntyle

R = e e e e T =

.85146

.741623
.665987
.608289
.55255

.505712
.464369
.425624

Root Means
1 1.762089 ¥,8§146
2 1.6794 +1.741623
3 1.613712 "  1.665987
4 1.561228"" 1.608289
5 1.532086 1.55255
6 1746828 1.505712
7 “1.427712 1.464369
8 1.389664 1.425624
9 . 1.353425 1.387723
10 1.31909 1.35209%
11 1.285107 1.316974
12 1.251495 1?2§3208
13 1.220034 £.250651
14 1.190358 " 1.21916
15 1.160454 1.188693
16 1.131468 1.159788
17 1.103657 1.129844
18 1.075725 1.101703
19 1,649466 1.074777
20 A.022778 1.047169
21 0.99731 1.021643
22 0.97245 0.996381
23 0.948068 0.972319
24 0.923267 0.947195
25 0.898762 0.922354
“26 0.874836 0.899488
27 0.851738 0.874302
28 0.828454 0.85368
29 0.805789 0.829765
30 0.782461 0.806874
31 0.760162 0.783089
32 0.73716 0.760735
33 0.715188 0.73753
34 0.692423 0.715691
35 0.670355 0.693319
36 0.647706 0.670879
37 0.625627 0.649194
38 0.602518 0.626582
39 0.579569 0.603138
40 0.556392 0.581074
41 0.531337 0.554827
42 0.504355 0.53059
43 0.475846 0.503024
44 0.441 0.471835

Random Data Eigenvalues

Prcn;yfe
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C.

Interpretation of Common Factor Analysis

Total Variance Explained

Number of factors to retain

Parallel analysis test

Factor

Initial Eigenvalues
1

Random Data Eigenvalues

Total

O 0o N O Ui A W N B

i
= O

=
w N

8.194

5.154

2.590

2.073

1.648

1.415

1.291
1.221
1.110
1.078
1.032

951

942

Root Prcntyle

1.85146
1.741623
1.665987
1.608289
1.55255
1
1
1

.505712
.464369
.425624

0o 4 o Uk W N =

Continue until the random
eigenvalues exceed the
eigenvalues obtained from
the data.

Root Means
1 1.762089 ¥,8§146
2 1.6794 +1.741623
3 1.613712 vx““ 1.665987
4 1.561228"" 1.608289
5 1.532086 1.55255
6 1746828 1.505712
7 “1.427712 1.464369
8 1.389664 1.425624
9 . 1.353425 1.387723
10 1.31909 1.35209%
11 1.285107 1.316974
12 1.251495 1?2§3208
13 1.220034 £.250651
14 1.190358 " 1.21916
15 1.160454 1.188693
16 1.13146g;” 1.159788
17 1.103657 1.129844
18 1.075725 1.101703
19 1?ﬁi9466 1.074777
20 A.022778 1.047169
21 0.99731 1.021643
22 0.97245 0.996381
23 0.948068 0.972319
24 0.923267 0.947195
25 0.898762 0.922354
“26 0.874836 0.899488
27 0.851738 0.874302
28 0.828454 0.85368
29 0.805789 0.829765
30 0.782461 0.806874
31 0.760162 0.783089
32 0.73716 0.760735
33 0.715188 0.73753
34 0.692423 0.715691
35 0.670355 0.693319
36 0.647706 0.670879
37 0.625627 0.649194
38 0.602518 0.626582
39 0.579569 0.603138
40 0.556392 0.581074
41 0.531337 0.554827
42 0.504355 0.53059
43 0.475846 0.503024
44 0.441 0.471835

Random Data Eigenvalues

Prentyle
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95t Eigenvalue 6
percentile

ragdtan

11655

8.19

data

Eigenvalue 5

dataiom

2.011.61
Eigenvalue 4

datarandom

259 1.67
Eigenvalue 3

data random

5.15 1.74
Eigenvalue 2

data random

Eigenvalue 1

random
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Interpretation of Common Factor Analysis
Number of factors to retain

a. Eigenvalues > 1 rule

- Retain 11 factors

b. Scree Test

- Retain 3 factors

c. Parallel analysis test

- Retain 5 factors

Tabachnick & Fidell:

“Previous factor analytic work had indicated the presence of between
three and five factors underlying the items of the BSRI. Investigation of
the factor structure for this sample of women is a goal of this analysis.”

They retained 4 factors

We’'ll retain 3 just to make naming easier...
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Interpretation of Common Factor Analysis

Type of rotation

e Decisions about the methods of rotation.

In order to improve interpretability, the initial solution is rotated. A factor solution is
easier to interpret if on a factor there are only a few highly loading variables and if
a variable loads highly on one factor only. Since we don't know how the factors
are related when we start, i.e. the degree of correlation between them, one
suggestion is to get both the orthogonal and oblique solutions for each of the
number of factors in the estimated range.

* Oblique

The axes are rotated and are allowed to become oblique to each other. One
procedure is the Oblimin method. The criterion is the same as for orthogonal
rotation, that of simple structure. The pattern matrix and the correlations between
the factors are interpreted. If the correlations between the factors are low then an
orthogonal solution is about the same and is interpreted.

* QOrthogonal

The axes of the factor space are rotated keeping the axes at right angles
(orthogonal). One procedure is a Varimax rotation. The axes are rotated to try and
maximise the fit for the conditions. The rotated factor matrix, or structure matrix is
interpreted.
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Factor Correlation Matrix

Factor 1 3

1 1.000 .143 -.106
2 143 1.000 -.177
3 -.106 -.177 1.000

Interpretation of Common Factor Analysis
Type of rotation

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.

There are low correlations among the factors (< .3),
so there is no real need for an oblique rotation.

So choose an orthogonal solution... but it’s a

judgement call and depends on the purpose. Note: T&F used a Promax

rotation rather than Oblimin

Factor Correlation Matrix

Factor 1 2 3 4

1 1.000

137
.106
151

137
1.000
.299
.011

.106
.299
1.000
.031

151
.011
.031
1.000

Extraction Method: Principal Axis Factoring.

Rotation Method: Promax with Kaiser Normalization.
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Interpretation of Common Factor Analysis
Interpretation of the factor solution

* Factors are named by choosing a phrase or definition

that encapsulates the “common thread” amongst the
high loading variables.

* The criterion for a high loading must be made explicit
(> .3 Is commonly used).

Reminder: This is a highly subjective process!
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Interpretation of Common Factor Analysis
Interpretation of the factor solution

1 0—/Warmtender
) sympathygentlesensitiv
undstand cheerful & °¥3! ifffcft |
0.5-$oftspokgentigonipads ]l!/;” atter ' P
o N ieldingfeminineG 0;‘?‘",/;?40 armriskdefbel
. 5 softspok, .ot \{Lelléd!lenl N A 1;;: nalytassertathlet
= = 0.0 consciena e  strpersleaderab
T = shyrel S{IPers  |eadact
© .
i LL selfsuff d°""“a“tinc||c,forceful
-0.57 masculinaSsert dominant
masculin
reliant
-1.0
A0
'1"0\_0'\'\,\’_1/\/‘:(‘)?(
200 o5 [ Ty05% "
Factor 4 gacl®

* Plotting the factors and making use of Point ID and

spinning the factors can be helpful in interpretation.
- Though it’s not terribly useful for presenting data to the reader.
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Rotated Factor Matrixa

Factor
1 2 3
leaderab .74 .08 .15
leadact 72 -.02 11
strpers .71 .06 -.08
dominant .69 -.23 -.05
forceful .67 -.09 -.08
assert .66 .06 -.03
stand .61 .19 .15
compete .50 .06 -.03
decide .48 .10 .37
risk .48 .16 .06
indpt .48 -.01 .47
ambitiou .44 12 .15
individ .44 .09 .19
defbel .43 .21 .00
shy -.38 -.08 -.05
masculin .32 -.26 -.11
analyt .30 .13 .09
athlet .28 .07 .04
warm 12 77 .01
tender .08 .71 .01
gentle .00 .70 .06
compass 11 .69 .02
undstand .08 .63 11
soothe .08 .61 .00
affect .28 .59 -.18
sympathy .00 .57 -.03
sensitiv .11 .53 .00
loyal .20 .51 .03
happy .07 .43 .29
cheerful 12 .40 .27
helpful .31 .37 .23
lovchil .01 .35 -.04
feminine .04 .33 .20
softspok -.31 .32 .27
truthful .16 .31 A7
yielding -.16 .30 .09
flatter .13 .26 -.25
foullang -.03 12 .08
selfsuff .43 .07 .66
reliant .37 .10 .50
conscien .22 .31 .44
moody .06 -.11 -.44
childlik .00 -.06 -.42
gullible -.06 .20 -.39

Extraction Method
Rotation Method: Varimax with Kaiser Normalization.

: Principal Axis Factoring.

a. Rotation converged in 5 iterations.

You need to
select a cut point
(T&F chose .45)

Excel File Edit Vikew Insert Format Tools Data Window Help &
®O0 rfm.xls O
Pl g H= B I & oveiv T+ B L O [@ »
New Open Save Print Import Copy Format Undo Redo AutoSum Sort A-Z Sort Z-A Gallery Toolbox
l Sheets I Charts i SmartArt Graphics WordArt i :
< B C D E F G H 1 T -
Rotated Factor Matrix® M
2 Factor
3 1 2 3
4 |leaderab 0.74 0.08 0.15
5 |leadact 0.72 0.02 0.1
6 strpers 0.7 0.06 0.08
7 | dominant 0.68 0.23 0.05
8 forcefu 0.67 -0.08 -0.08
9  assert 0.66 0.06 -0.03
10 |stand 0.61 0.18 0.15
11 compete 0.50 0.06 0.03
12 decide 048 0.10 0.37
13 risk 048 0.16 0.06
14 indpt 048 0.01 047
15 |ambitiou 0.44 0.12 0.15
16 |individ 0.44 0.08 0.19
17 defbel 043 0.21 -0.01
18 shy 0.38 .08 -0.05
19 |masculin 0.32 0.26 0.1
20 analyt 0.30 0.13 0.08
21 athlet 0.28 0.07 0.04
22 'warm 0.12 0.77 0.01
23 tender 0.08 0.71 0.01
24 gentle 0.00 0.70 0.06
25 compass 0.1 0.68 0.02 w
26 undstand 0.08 0.63 0.1
27 soothe 0.08 0.61 0.01
28 affect 0.28 0.58 0.18
29 sympathy 0.00 0.57 0.03
30 sensitiv 0.1 0.53 0.00
31 loyal 0.20 0.51 0.03
32 happy 0.07 0.43 0.29
33 cheerful 0.12 0.40 0.27
34  helpful 0.31 0.37 0.23
35 lovchi 0.01 0.35 0.04
36 feminine 0.04 0.33 0.20
37 softspok -0.31 0.32 0.27
38 truthful 0.16 0.31 0.17
39 vyielding 0.16 0.30 0.08
40 flatter 0.13 0.26 0.25
41 foullang -0.03 0.12 0.08
42 selfsuff 043 0.07 0.66
43 reliant 0.37 0.10 0.50
44 |conscien 0.22 0.31 044
45 'moody 0.06 0.1 0.44
46 childliik 0.01 .06 0.42
47 gullible 0.06 0.20 -0.38
48 Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.
49 a. Rotation converged in 5 iterations. )
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Rotated Factor Matrixa

Factor
1 2 3
leaderab .74 .08 .15
leadact 72 -.02 11
strpers .71 .06 -.08
dominant .69 -.23 -.05
forceful .67 -.09 -.08
assert .66 .06 -.03
stand .61 .19 .15
compete .50 .06 -.03
decide .48 .10 .37
risk .48 .16 .06
indpt .48 -.01 .47
ambitiou .44 12 .15
individ .44 .09 .19
defbel .43 .21 .00
shy -.38 -.08 -.05
masculin .32 -.26 -.11
analyt .30 .13 .09
athlet .28 .07 .04
warm 12 77 .01
tender .08 .71 .01
gentle .00 .70 .06
compass 1 .69 .02
undstand .08 .63 11
soothe .08 .61 .00
affect .28 .59 -.18
sympathy .00 .57 -.03
sensitiv 11 .53 .00
loyal .20 .51 .03
happy .07 .43 .29
cheerful 12 .40 .27
helpful .31 .37 .23
lovchil .01 .35 -.04
feminine .04 .33 .20
softspok -.31 .32 .27
truthful .16 .31 A7
yielding -.16 .30 .09
flatter .13 .26 -.25
foullang -.03 12 .08
selfsuff .43 .07 .66
reliant .37 .10 .50
conscien .22 .31 .44
moody .06 -.11 -.44
childlik .00 -.06 -.42
gullible -.06 .20 -.39

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

You need to
select a cut point
(T&F chose .45)

Dominance

Slight factorial complexity

Independence

Empathy

Factor
1 2 3
leadership ability 0.08 0.15
act as a leader -0.02 | 0.11
strong personality 0.06 | -0.08
dominant -0.23 | -0.05
forceful -0.09 | -0.08
assertive 0.06 | -0.03
willing to take a stand 0.19 0.15
competitive 0.06 | -0.03
makes decisions easily 0.10 0.37

iling to take risks
independent |

self sufficient

self reliant

affectionate

loyal

warm

compassionate

sensitive

eager to soothe hurt feelings

tender

understanding

sympathy

gentle
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