
Consider an investigation into the nature of intelligence.

ability to recite song 
lyrics from memory 

ability to hold two 
conversations at once

speed at completing 
crosswords

ability to assemble 
something from IKEA

ability to use a street 
directory

speed at completing 
jigsaw puzzles

What might be the !underlying factors"?
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• Consider six variables that 
are intercorrelated.
- Some more than others...

• The aim is to simplify our 
description of the information 
provided by the variables.

• A further aim may be to 
define the constructs which 
the variables describe.
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Participant

1 -0.14 -2.33 -2.75 0.71 1.87 -0.32

2 0.42 -0.35 0.38 -0.16 -0.62 0.52

3 -1.18 -0.53 -2.74 0.87 -0.61 0.51

4 0.67 1.44 -1.02 -1.11 -1.87 -0.54

5 0.27 0.26 1.66 0.81 0.58 1.29

6 0.11 0.25 -0.85 1.26 1.17 2.52

7 1.11 0.97 -1.66 1.30 0.79 2.60

8 0.54 0.43 -1.10 -1.51 -0.46 -1.96

9 0.50 1.72 2.25 -1.02 -0.97 -0.08

10 0.86 2.07 -0.40 -0.02 -0.30 -0.34

11 0.64 0.40 -0.56 1.42 1.31 1.95

12 -0.51 0.25 -0.05 0.39 0.25 -0.28

13 0.48 0.92 -0.95 -0.59 0.31 -2.62

14 0.54 1.13 0.11 -0.07 -0.74 0.12

15 -0.39 -0.92 -1.41 1.54 1.34 2.61

16 0.87 2.16 0.70 -0.83 -2.75 -1.41

17 -0.62 -1.88 -0.18 -0.32 -0.80 -1.00

18 1.80 0.44 1.68 0.90 1.38 0.08

19 0.65 -1.01 1.70 2.55 2.75 4.25

20 -1.42 -0.22 -2.00 -0.11 0.69 -1.00

100 0.29 0.87 -1.99 0.24 -0.37 -0.28

...
...

...
...

...
...

...

X =
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Z =

Participant

1 -0.10 -1.62 -1.78 0.78 1.45 -0.16

2 0.50 -0.19 0.31 -0.07 -0.28 0.37

3 -1.22 -0.32 -1.77 0.93 -0.28 0.37

4 0.77 1.10 -0.62 -0.99 -1.15 -0.30

5 0.34 0.25 1.16 0.87 0.55 0.86

6 0.17 0.24 -0.51 1.31 0.96 1.65

7 1.24 0.76 -1.05 1.35 0.70 1.70

8 0.63 0.37 -0.68 -1.38 -0.17 -1.21

9 0.59 1.30 1.56 -0.90 -0.53 -0.01

10 0.97 1.55 -0.21 0.07 -0.06 -0.18

11 0.74 0.35 -0.32 1.47 1.06 1.28

12 -0.50 0.24 0.02 0.47 0.32 -0.14

13 0.56 0.72 -0.58 -0.49 0.36 -1.63

14 0.63 0.87 0.13 0.02 -0.37 0.12

15 -0.37 -0.60 -0.88 1.58 1.08 1.70

16 0.98 1.62 0.52 -0.72 -1.77 -0.86

17 -0.62 -1.29 -0.06 -0.22 -0.41 -0.60

18 1.98 0.38 1.18 0.96 1.11 0.09

19 0.75 -0.67 1.19 2.56 2.06 2.75

20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60

100 0.36 0.69 -1.27 0.32 -0.11 -0.14

...
...

...
...

...
...

...
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1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

R =
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1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

R =

1 2 3 4 5 6

2.55 0 0 0 0 0

0 2.02 0 0 0 0

0 0 0.51 0 0 0

0 0 0 0.49 0 0

0 0 0 0 0.25 0

0 0 0 0 0 0.18

L =

V =

1 2 3 4 5 6

0.48 -0.35 0.02 -0.07 -0.80 0.02

0.35 -0.43 -0.59 0.47 0.34 -0.06

0.32 -0.48 0.65 -0.18 0.43 -0.17

0.41 0.48 -0.08 -0.07 0.02 -0.77

0.50 0.24 -0.25 -0.58 0.24 0.49

0.37 0.42 0.39 0.64 0.00 0.36
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A = P =

1 2 3 4 5 6

-0.12 -1.57 -0.96 -2.06 -1.73 -1.06

0.15 0.13 0.77 0.32 -0.80 -0.03

-0.55 -1.37 -1.20 0.81 0.11 0.98

-0.33 0.93 -1.12 1.59 -1.61 -0.34

0.98 -0.09 1.06 0.09 0.92 0.70

1.02 -1.15 -0.23 0.86 -0.02 -0.32

1.28 -0.89 -1.01 1.50 -1.96 -0.18

-0.55 0.89 -1.36 -0.47 -1.47 -1.52

0.37 1.46 0.64 0.94 0.99 -0.24

0.55 0.68 -1.53 0.89 -0.71 0.42

1.23 -0.87 -0.38 0.40 -0.64 0.22

0.09 -0.22 -0.43 -0.23 1.15 0.65

-0.17 0.75 -2.07 -1.16 -0.76 -0.08

0.32 0.48 -0.40 0.91 -0.47 0.50

0.72 -1.79 0.07 0.36 0.01 -0.26

-0.18 1.70 -0.61 1.61 -0.91 1.86

-0.80 -0.24 0.84 -0.99 -0.16 0.40

1.52 0.46 0.39 -1.15 -1.33 0.83

2.24 -1.64 2.18 -0.26 0.48 0.28

-0.66 -0.75 -1.68 -0.67 1.49 -0.73

0.02 -0.18 -1.79 0.68 -1.24 0.38

...
...

...
...

...
...

1 2 3 4 5 6

0.76 0.50 0.02 -0.05 -0.40 -0.01

0.56 0.61 -0.42 0.33 0.17 0.02

0.50 0.68 0.47 -0.12 0.22 0.07

0.65 -0.68 -0.06 -0.05 0.01 0.33

0.79 -0.34 -0.18 -0.40 0.12 -0.21

0.59 -0.59 0.28 0.45 0.00 -0.15

These loadings represent correlations 
between factors and variables

(i.e., between P and X)
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P =

1 2 3 4 5 6

-0.12 -1.57 -0.96 -2.06 -1.73 -1.06

0.15 0.13 0.77 0.32 -0.80 -0.03

-0.55 -1.37 -1.20 0.81 0.11 0.98

-0.33 0.93 -1.12 1.59 -1.61 -0.34

0.98 -0.09 1.06 0.09 0.92 0.70

1.02 -1.15 -0.23 0.86 -0.02 -0.32

1.28 -0.89 -1.01 1.50 -1.96 -0.18

-0.55 0.89 -1.36 -0.47 -1.47 -1.52

0.37 1.46 0.64 0.94 0.99 -0.24

0.55 0.68 -1.53 0.89 -0.71 0.42

1.23 -0.87 -0.38 0.40 -0.64 0.22

0.09 -0.22 -0.43 -0.23 1.15 0.65

-0.17 0.75 -2.07 -1.16 -0.76 -0.08

0.32 0.48 -0.40 0.91 -0.47 0.50

0.72 -1.79 0.07 0.36 0.01 -0.26

-0.18 1.70 -0.61 1.61 -0.91 1.86

-0.80 -0.24 0.84 -0.99 -0.16 0.40

1.52 0.46 0.39 -1.15 -1.33 0.83

2.24 -1.64 2.18 -0.26 0.48 0.28

-0.66 -0.75 -1.68 -0.67 1.49 -0.73

0.02 -0.18 -1.79 0.68 -1.24 0.38

...
...

...
...

...
...
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2
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Component 1
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P =

1 2 3 4 5 6

-0.12 -1.57 -0.96 -2.06 -1.73 -1.06

0.15 0.13 0.77 0.32 -0.80 -0.03

-0.55 -1.37 -1.20 0.81 0.11 0.98

-0.33 0.93 -1.12 1.59 -1.61 -0.34

0.98 -0.09 1.06 0.09 0.92 0.70

1.02 -1.15 -0.23 0.86 -0.02 -0.32

1.28 -0.89 -1.01 1.50 -1.96 -0.18

-0.55 0.89 -1.36 -0.47 -1.47 -1.52

0.37 1.46 0.64 0.94 0.99 -0.24

0.55 0.68 -1.53 0.89 -0.71 0.42

1.23 -0.87 -0.38 0.40 -0.64 0.22

0.09 -0.22 -0.43 -0.23 1.15 0.65

-0.17 0.75 -2.07 -1.16 -0.76 -0.08

0.32 0.48 -0.40 0.91 -0.47 0.50

0.72 -1.79 0.07 0.36 0.01 -0.26

-0.18 1.70 -0.61 1.61 -0.91 1.86

-0.80 -0.24 0.84 -0.99 -0.16 0.40

1.52 0.46 0.39 -1.15 -1.33 0.83

2.24 -1.64 2.18 -0.26 0.48 0.28

-0.66 -0.75 -1.68 -0.67 1.49 -0.73

0.02 -0.18 -1.79 0.68 -1.24 0.38

...
...

...
...

...
...

9



1 2 3 4 5 6

0.76 0.50 0.02 -0.05 -0.40 -0.01

0.56 0.61 -0.42 0.33 0.17 0.02

0.50 0.68 0.47 -0.12 0.22 0.07

0.65 -0.68 -0.06 -0.05 0.01 0.33

0.79 -0.34 -0.18 -0.40 0.12 -0.21

0.59 -0.59 0.28 0.45 0.00 -0.15

A =
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Another motivational example
Consider an investigation into the nature of intelligence. Data on six measures are collected:

ability to recite song 
lyrics from memory 

ability to hold two 
conversations at once

speed at completing 
crosswords

ability to assemble 
something from IKEA

ability to use a street 
directory

speed at completing 
jigsaw puzzles

What might be the !underlying factors"?
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• The first principal component finds the 
direction in which all the variables seem to 
be pointing.

• However, the principal components don"t 
seem to be pointing in the !right" direction.

- If we want a principal component (or factor) to be 
the thing that our variables have in common, we 
would like the principal components to !line up" with 
our groups of variables.

• Two problems with a PCA solution:
1. (above) !lining up" our components with our groups 

of variables.

2. These dimensions are plotted in 2D space. How do 
we know how many dimensions are needed to 
!capture" the structure of the underlying variables?

• How do we assign meaning to components?

• How do we decide how many components 
can adequately account for the variation in 
the data?
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Factor Analysis via PCA

• Overview

• The !number of factors" problem

• The rotation problem

• Modelling data in factor analysis

• Schematic representation of factor 
analysis via PCA
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Overview
Methods of Factor Analysis

Factor Analysis via PCA Common Factor Analysis

• Based on PCA. • Not based on PCA.

• Called “principal 
components analysis” by 
T&F.

• Called “factor analysis” 
by T&F.

- involves performing a 
principal components 
analysis to repartition the 
entire variance.

- choosing only some factors 
(and discarding the rest).

- rotating the factors to make 
them easier to label.

14



“choosing only some factors (and discarding the rest).”

William of Ockham
(1288 - 1348)

“entia non sunt multiplicanda praeter necessitatem”

“entities should not be multiplied beyond necessity.”

“All things being equal, the simplest solution tends to be the best one.”

conditioned inhibitor acquires associative strength more quickly
than does an elementally trained CS.

The extended comparator hypothesis, recently proposed by Den-
niston, Savastano, and Miller (2001), explains superconditioning
in quite a different way. In the framework of the original compar-
ator hypothesis (Miller & Matzel, 1988; Miller & Schachtman,
1985; see upper right part of Figure 1), conditioned responding to
the target cue is determined at the time of testing by the interaction
of three associations, which are formed at the time of training. The
first association is between the target CS and the US (Link 1), the
second association is between the target CS and another stimulus
(i.e., comparator stimulus) that is associated with the target CS
(Link 2), and the third of these associations is between the com-
parator stimulus and the US (Link 3). At test, conditioned respond-
ing to the target CS is assumed to reflect a comparison of the US
representations directly and indirectly activated by the target CS.

Excitatory responding to the target CS is positively correlated with
the strength of the direct activation of the US representation (Link
1) and negatively correlated with the strength of the indirect
activation of the US representation (the product of the strengths of
Links 2 and 3). All cues maintaining a within-compound associ-
ation with either the target CS or with an associate of the target CS
act conjointly as comparator stimuli (Figure 1 depicts only one
among what might be many comparator stimuli). It is noteworthy
that, in the comparator framework, cue-competition phenomena
are explained as the behavioral consequence of an interaction
among different associations at the time of testing.

Furthermore, in the framework of the extended comparator
hypothesis of Denniston et al. (2001), not only is Link 1 modulated
by Links 2 and 3, but further comparator processes are presumed
to modulate both Links 2 and 3 (see Figure 1). Thus, the effective
strength of the target CS!first-order comparator stimulus associ-

Figure 1. The extended comparator hypothesis (Denniston, Savastano, & Miller, 2001). Ovals represent
stimulus representations, and rectangles represent the physical test stimulus and response. Conditioned respond-
ing to the target conditioned stimulus (CS) is determined by both the directly and the indirectly activated
unconditioned stimulus (US) representation at the time of testing: Direct activation of the US representation
(Link 1) is positively correlated, and indirect activation of the US representation (the product of Links 2 and 3)
is negatively correlated with the magnitude of conditioned responding. In the original comparator hypothesis
(Miller & Matzel, 1988; Miller & Schachtman, 1985), responding to the target CS is down-modulated only by
the absolute strength of Links 2 and 3, whereas in the extended comparator hypothesis, the effectiveness of each
of these two comparator links is potentially influenced by its own comparator processes.

186 URUSHIHARA, WHEELER, PINEÑO, AND MILLER

In general, mathematical models with the smallest number 
of parameters are preferred as each parameter introduced 
into the model adds some uncertainty to it. Additionally, 
adding too many parameters leads to “connect-the-dots” 
curve-fitting which has little predictive power.

∆V = αβ (λ− V )
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“Things should be as simple 
as possible, but not simpler.”

- Albert Einstein

“The truth always turns out to 
be simpler than you thought.”

- Richard Feynman

“If a thing can be done adequately by means of 
one, it is superfluous to do it by means of 
several; for we observe that nature does not 
employ two instruments where one suffices.”

- Thomas Aquinas

16



The !number of factors" problem

• Choosing the number of factors requires a 
personal judgement.

• More factors provide more information, but less 
factors provide a simpler solution.

• How to help decide on the number of factors:
- Eigenvalues > 1

- Scree Plot

- Parallel analysis test

- Theoretical considerations

• It"s best to compare different solutions before 
making a final decision.

17



1 2 3 4 5 6

2.55 0 0 0 0 0

0 2.02 0 0 0 0

0 0 0.51 0 0 0

0 0 0 0.49 0 0

0 0 0 0 0.25 0

0 0 0 0 0 0.18

L =

The !number of factors" problem
Eigenvalues > 1

!eigenvalues greater than one" rule...
18
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2.55

2.02

.51 .49

.25
.18
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Frank!s Slide

On April 29, 1903, at 4:10 a.m., 82 million tonnes (30 million 
cubic meters) of limestone crashed from the summit of Turtle 
Mountain and covered approximately three square 
kilometres of the valley floor. The slide dammed the 
Crowsnest River and formed a small lake and buried seven 
houses on the outskirts of the sleeping town of Frank, as well 
as several rural buildings. Frank was home to approximately 
600 people in 1903; of the roughly 100 individuals who lived 
in the path of the slide, more than 70 were killed.
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The !number of factors" problem
Scree Plot
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The plot looks like the side of a mountain, 
and “scree” refers to the debris fallen 
from a mountain and lying at its base.

The scree test proposes to stop analysis 
at the point the mountain ends and the 
debris begins.
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The !number of factors" problem
Parallel analysis test

Copyright 2000 Psychonomic Society, Inc. 396

Behavior Research Methods, Instruments, & Computers
2000, 32 (3), 396-402

Users of factor and principal components analyses are
required to make decisions on a number of technical is-
sues, including the number factors to retain, extraction
and rotation techniques, and the procedure for computing
factor scores. The choices and controversies involved in
each step have probably led many to shy away from the
procedure or to be suspicious of its results. It seems only
logical to assume that the many possible routes through
the decision tree result in differing results for the same
data. However, the crucial decision is that of determining
how many factors to retain. Assorted decisions on the
other issues generally produce similar results when the
optimal number of factors is specified (Zwick & Velicer,
1986). In addition to conflicting findings, other problems
also emerge when nonoptimal numbers of factors are ex-
tracted. Under-extraction compresses variables into a
small factor space, resulting in a loss of important infor-
mation, a neglect of potentially important factors, a dis-
torted fusing of two or more factors, and an increase in
error in the loadings. Over-extraction diffuses variables
across a large factor space, potentially resulting in factor
splitting, in factors with few high loadings, and in re-
searchers’ attributing excessive substantive importance to
trivial factors (see Wood, Tataryn, & Gorsuch, 1996;
Zwick & Velicer, 1986, for reviews).

Users who are concerned with extracting the optimal
number of factors are nevertheless confronted with a va-
riety of decision rules that have been described in the lit-
erature (see Coovert & McNelis, 1988; Floyd & Widaman,
1995; Gorsuch, 1997; Merenda, 1997; Tinsley & Tinsley,
1987; Turner, 1998; and Zwick & Velicer, 1986, for re-
views). The discussions are sometimes technical, and

many users simply trust the default decision rule imple-
mented in their statistical software packages (typically the
eigenvalues-greater-than-one rule). Other users examine
scree plots of eigenvalues, which are also available in pop-
ular statistical packages (such as SPSS and SAS), before
making their decisions. Unfortunately, these two highly
popular decision rules are problematic. The eigenvalues-
greater-than-one rule typically overestimates, and some-
times underestimates, the number of components (Zwick
& Velicer, 1986). This overly mechanical and somewhat
arbitrary rule also does not always result in components
that are reliable, as was originally believed (Cliff, 1988).
The scree test has been a strongly promoted alternative rule
of thumb (Cattell & Vogelmann, 1977). But it involves eye-
ball searches of plots for sharp demarcations between the
eigenvalues for major and trivial factors. In practice, such
demarcations do not always exist or there may be more
than one demarcation point. Not surprisingly, the relia-
bility of scree plot interpretations is low, even among ex-
perts (Crawford & Koopman, 1979; Streiner, 1998).

Fortunately, there is increasing consensus among sta-
tisticians that two less well-known procedures, parallel
analysis and Velicer’s minimum average partial (MAP)
test, are superior to other procedures and typically yield
optimal solutions to the number of components problem
(Wood et al., 1996; Zwick & Velicer, 1982, 1986). These
procedures are statistically based, rather than being me-
chanical rules of thumb. In parallel analysis, the focus is
on the number of components that account for more vari-
ance than the components derived from random data. In
the MAP test, the focus is on the relative amounts of sys-
tematic and unsystematic variance remaining in a corre-
lation matrix after extractions of increasing numbers of
components. The popular SPSS and SAS statistical soft-
ware packages do not permit users to perform these rec-
ommended tests. However, the packages do permit users
to write their own programs. The present paper describes
how parallel analyses and the MAP test can be readily con-

This work was supported by a grant from the Social Sciences and
Humanities Research Council of Canada. Address correspondence to
B. P. O’Connor, Department of Psychology, Lakehead University,
955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada (e-mail: brian.
oconnor@lakeheadu.ca).

SPSS and SAS programs for
determining the number of components

using parallel analysis and Velicer’s MAP test

BRIAN P. O’CONNOR
Lakehead University, Thunder Bay, Ontario, Canada

Popular statistical software packages do not have the proper procedures for determining the number
of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum
average partial (MAP) test are validated procedures, recommended widely by statisticians. However,
many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-
greater-than-one rule. Use of the proper procedures might be increased if these procedures could be
conducted within familiar software environments. This paper describes brief and efficient programs
for using SPSS and SAS to conduct parallel analyses and the MAP test.

http://people.ok.ubc.ca/brioconn/nfactors/nfactors.html
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The rotation problem

• Factors are rotated to make it easier to label

• Two types of rotation are possible:
1. Orthogonal: factors remain uncorrelated.
2. Oblique: factors are allowed to become correlated

One simple solution to the observation that 
the components are not aligning with the 
directions of the two groups of variables is 
to rotate the axes so that they do align.
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The rotation problem

Unrotated Solution
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(orthogonal)
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The rotation problem
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Verbal

Spatial

The meanings of the variables that load 
highly on a factor are taken to define 
the meaning of that factor or to label 
the factor. Obviously, we need to know 
and are clear about what the variables 
mean or what the variables measure.
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Orthogonal rotation to simple structure:
variance accounted for by the factors = SS loadings

In a rotated structure matrix, the sum 
of squared loadings give the amount of 
the total variance accounted for by that 
rotated factor and is a measure of the 
relative importance of the factor.

In an unrotated structure matrix, 
the the eigenvalues are the sum 
of squared loadings (SSLs) of 
the variables for each factor.
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Orthogonal rotation:
Euler Representation

Unrotated Solution Rotated Solution
(orthogonal)

27



Orthogonal rotation:
Matrix Representation

Arotated = AunrotatedΛ
Λ = the factor transformation matrix

- represents the angles that the axes are rotated.
- this isn"t interpreted.

1 2

0.76 0.50

0.56 0.61

0.50 0.68

0.65 -0.68

0.79 -0.34

0.59 -0.59

Aunrotated

×
1 2

0.74 0.67

-0.67 0.74

Λ
1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Arotated

=
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Aunrotated Arotated

Orthogonal rotation:
Loading Matrices

1 2

0.76 0.50

0.56 0.61

0.50 0.68

0.65 -0.68

0.79 -0.34

0.59 -0.59

1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Remember:
These loadings are 
!regression-like" weights 
used to estimate the 
unique contribution of 
each factor to the 
variance of the variable.

They represent 
correlations between the 
factors and the variables.

High loadings 
are interpreted
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The rotation problem

Unrotated Solution
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Rotated Solution
(orthogonal)
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Importance of factors
In an orthogonally rotated factor solution, the Sum of Squared Loadings 
(SSLs) give the amount of variance accounted for by the rotated factor.

Aunrotated Arotated

1 2

0.76 0.50

0.56 0.61

0.50 0.68

0.65 -0.68

0.79 -0.34

0.59 -0.59

1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

2.55Sum of Square Loadings 2.02 2.31 2.26

42.4% 33.7% 38.5% 37.6%/6

31



Factor Scores

• We can generate factor scores for each case using 
the loading matrix.

• This gives us regression-like coefficients for weighing 
our variable scores to produce factor scores.

R−1A = B

2.70 -1.03 -1.18 -0.13 -0.61 -0.05

-1.03 1.76 -0.15 0.24 -0.08 0.02

-1.18 -0.15 1.95 0.63 -0.16 -0.12

-0.13 0.24 0.63 3.47 -1.82 -1.52

-0.61 -0.08 -0.16 -1.82 2.50 0.17

-0.05 0.02 -0.12 -1.52 0.17 1.99

R−1

1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Arotated

× =

1 2

0.06 0.39

-0.04 0.37

-0.08 0.38

0.42 -0.08

0.34 0.08

0.37 -0.06

B
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• If we multiply each subject"s original standardised score 
by these coefficients, then we get the factor scores.

Factor Scores

Participant

1 -0.10 -1.62 -1.78 0.78 1.45 -0.16

2 0.50 -0.19 0.31 -0.07 -0.28 0.37

3 -1.22 -0.32 -1.77 0.93 -0.28 0.37

4 0.77 1.10 -0.62 -0.99 -1.15 -0.30

5 0.34 0.25 1.16 0.87 0.55 0.86

6 0.17 0.24 -0.51 1.31 0.96 1.65

7 1.24 0.76 -1.05 1.35 0.70 1.70

8 0.63 0.37 -0.68 -1.38 -0.17 -1.21

9 0.59 1.30 1.56 -0.90 -0.53 -0.01

10 0.97 1.55 -0.21 0.07 -0.06 -0.18

11 0.74 0.35 -0.32 1.47 1.06 1.28

12 -0.50 0.24 0.02 0.47 0.32 -0.14

13 0.56 0.72 -0.58 -0.49 0.36 -1.63

14 0.63 0.87 0.13 0.02 -0.37 0.12

15 -0.37 -0.60 -0.88 1.58 1.08 1.70

16 0.98 1.62 0.52 -0.72 -1.77 -0.86

17 -0.62 -1.29 -0.06 -0.22 -0.41 -0.60

18 1.98 0.38 1.18 0.96 1.11 0.09

19 0.75 -0.67 1.19 2.56 2.06 2.75

20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60

100 0.36 0.69 -1.27 0.32 -0.11 -0.14

...
...

...
...

...
...

...

Z
1 2

0.06 0.39

-0.04 0.37

-0.08 0.38

0.42 -0.08

0.34 0.08

0.37 -0.06

B

×

Participant 1 2

1 0.96 -1.25

2 0.02 0.20

3 0.51 -1.38

4 -0.87 0.46

5 0.79 0.59

6 1.52 -0.17

7 1.55 0.20

8 -1.01 0.29

9 -0.71 1.33

10 -0.05 0.87

11 1.50 0.18

12 0.21 -0.10

13 -0.63 0.44

14 -0.09 0.58

15 1.73 -0.84

16 -1.28 1.14

17 -0.43 -0.72

18 0.82 1.36

19 2.76 0.29

20 0.01 -1.00

100 0.14 -0.12

...
...

=

F

ZB = F
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• If we multiply each subject"s original standardised score 
by these coefficients, then we get the factor scores.

Factor Scores

Participant 1 2

1 0.96 -1.25

2 0.02 0.20

3 0.51 -1.38

4 -0.87 0.46

5 0.79 0.59

6 1.52 -0.17

7 1.55 0.20

8 -1.01 0.29

9 -0.71 1.33

10 -0.05 0.87

11 1.50 0.18

12 0.21 -0.10

13 -0.63 0.44

14 -0.09 0.58

15 1.73 -0.84

16 -1.28 1.14

17 -0.43 -0.72

18 0.82 1.36

19 2.76 0.29

20 0.01 -1.00

100 0.14 -0.12

...
...

F

ZB = F
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This means that the first participant 
has an estimated standard score 
of .96 on the first factor (verbal), and 
-1.25 on the second factor (spatial).

This particular participant seems to 
be more verbally inclined than they 
are spatially.
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• We can also predict each participant"s score on each 
variable using these factor scores.

Factor Scores

Participant 1 2

1 0.96 -1.25

2 0.02 0.20

3 0.51 -1.38

4 -0.87 0.46

5 0.79 0.59

6 1.52 -0.17

7 1.55 0.20

8 -1.01 0.29

9 -0.71 1.33

10 -0.05 0.87

11 1.50 0.18

12 0.21 -0.10

13 -0.63 0.44

14 -0.09 0.58

15 1.73 -0.84

16 -1.28 1.14

17 -0.43 -0.72

18 0.82 1.36

19 2.76 0.29

20 0.01 -1.00

100 0.14 -0.12

...
...

F

× 1 0.23 0.00 -0.08 0.94 0.82 0.84

2 0.89 0.83 0.84 -0.07 0.28 -0.04

A′
rotated

Participant

1 -0.88 -1.02 -1.13 0.99 0.44 0.86

2 0.18 0.16 0.16 0.01 0.07 0.01

3 -1.11 -1.14 -1.21 0.58 0.03 0.49

4 0.21 0.38 0.46 -0.85 -0.58 -0.75

5 0.70 0.49 0.43 0.70 0.81 0.63

6 0.20 -0.13 -0.27 1.44 1.20 1.28

7 0.54 0.17 0.04 1.44 1.32 1.29

8 0.03 0.24 0.33 -0.96 -0.74 -0.85

9 1.01 1.09 1.18 -0.76 -0.20 -0.65

10 0.76 0.72 0.74 -0.11 0.20 -0.08

11 0.51 0.16 0.03 1.40 1.28 1.25

12 -0.04 -0.08 -0.10 0.21 0.15 0.18

13 0.24 0.36 0.42 -0.62 -0.39 -0.55

14 0.49 0.47 0.49 -0.12 0.09 -0.10

15 -0.35 -0.69 -0.86 1.69 1.18 1.48

16 0.72 0.93 1.06 -1.28 -0.73 -1.12

17 -0.74 -0.60 -0.57 -0.35 -0.56 -0.33

18 1.39 1.13 1.08 0.67 1.05 0.62

19 0.89 0.25 0.02 2.58 2.34 2.30

20 -0.88 -0.83 -0.84 0.08 -0.27 0.05

100 -0.07 -0.10 -0.11 0.14 0.08 0.12

...
...

...
...

...
...

...

=

Zpredicted

FA′ = Zpredicted
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• We can also predict each participant"s score on each 
variable using these factor scores.

Factor Scores

Participant

1 -0.88 -1.02 -1.13 0.99 0.44 0.86

2 0.18 0.16 0.16 0.01 0.07 0.01

3 -1.11 -1.14 -1.21 0.58 0.03 0.49

4 0.21 0.38 0.46 -0.85 -0.58 -0.75

5 0.70 0.49 0.43 0.70 0.81 0.63

6 0.20 -0.13 -0.27 1.44 1.20 1.28

7 0.54 0.17 0.04 1.44 1.32 1.29

8 0.03 0.24 0.33 -0.96 -0.74 -0.85

9 1.01 1.09 1.18 -0.76 -0.20 -0.65

10 0.76 0.72 0.74 -0.11 0.20 -0.08

11 0.51 0.16 0.03 1.40 1.28 1.25

12 -0.04 -0.08 -0.10 0.21 0.15 0.18

13 0.24 0.36 0.42 -0.62 -0.39 -0.55

14 0.49 0.47 0.49 -0.12 0.09 -0.10

15 -0.35 -0.69 -0.86 1.69 1.18 1.48

16 0.72 0.93 1.06 -1.28 -0.73 -1.12

17 -0.74 -0.60 -0.57 -0.35 -0.56 -0.33

18 1.39 1.13 1.08 0.67 1.05 0.62

19 0.89 0.25 0.02 2.58 2.34 2.30

20 -0.88 -0.83 -0.84 0.08 -0.27 0.05

100 -0.07 -0.10 -0.11 0.14 0.08 0.12

...
...

...
...

...
...

...

Zpredicted

FA′ = Zpredicted
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This means that 
the first participant 
is predicted to have 
a standardised 
score of -.88 on 
lyric recollection, 
-1.02 on holding 
two conversations 
at once, etc. for 
each of the six 
variables.

Note: The closer that these predicted Z scores match the actual Z scores, 
the better the factor analysis captured the relationship among the variables.
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• We can also predict each participant"s score on each 
variable using these factor scores.

Factor Scores

FA′ = Zpredicted

Remember me?

DATA = MODEL + RESIDUAL 
...it"s what is left after the model has been fitted.  

= FA′ + EZ

Zj ← F1F2 . . . Fm

We"re calculating these using the regression method.

37



• Consider the previous regression equation:

Communalities

Zj ← F1F2 . . . Fm

• There"s an R2 value for each variable.
- How much of the variance of a variable is accounted for by the factors.

- How much the variable has in common with the factors.

• It is called the communality of the variable,    .

• For orthogonal solutions, 

h2

The sum of squared loadings

h2
j = a2

j1 + · · · + a2
jm
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Arotated

1 2

0.23 0.88

0.00 0.83

-0.08 0.84

0.94 -0.07

0.82 0.28

0.84 -0.04

Sum of Square Loadings 2.31

38.5%

2.26

37.6%

Communalities

∑
a2 = .232 + .882 = .836

That is, 83.6% of the variance in 
!lyric recall" is accounted for by 
Factor 1 plus Factor 2.

This gives us an indication of how 
much !lyric recall" has in common 
with the two factors.

/6
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Arotated

1 2

0.23 0.88 0.836

0.00 0.83 0.681

-0.08 0.84 0.714

0.94 -0.07 0.887

0.82 0.28 0.748

0.84 -0.04 0.699

2.31

38.5%

2.26

37.6%

Communalities

h2

∑
a2 = .232 + .882 = .836

4.564

= λ1

∑
a2 = .232 + .002 +−.082 + .942 + .822 + .842 = 2.31

That is, 83.6% of the variance in 
!lyric recall" is accounted for by 
Factor 1 plus Factor 2.

This gives us an indication of how 
much !lyric recall" has in common 
with the two factors.

Sum of Square Loadings

/6 76.11%
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The reproduced correlation matrix

1

p

1 p

R

1

p

1 p

A

1

p

1 p

A′
AA′ = R

• For a full principal components analysis with   
components retained, the original     matrix could be 
expressed in terms of the matrix    .  

p
R

A

• In factor analysis, when m factors are retained, a 
reproduced correlation matrix can be calculated:

ArotatedA′
rotated = R
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1

p

1 p

R

1

p

1 p

A

1

p

1 p

A′
AA′ = R

1

p

1 p

1

p

1

pA

1

p

1

pA ′

ArotatedA′
rotated = RR

The reproduced correlation matrix

R

Me again...

DATA = MODEL + RESIDUAL 
...it"s what is left after the model has been fitted.  

= + ER
Rfull Rreproduced Rresidual= +
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Rfull

1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

Rresidual

0.16 -0.09 -0.07 -0.00 -0.03 -0.02

-0.09 0.32 -0.20 0.02 -0.04 0.03

-0.07 -0.20 0.29 0.01 -0.02 0.07

-0.00 0.02 0.01 0.11 -0.04 -0.09

-0.03 -0.04 -0.02 -0.04 0.25 -0.20

-0.02 0.03 0.07 -0.09 -0.20 0.30

+

+

Rreproduced

0.84 0.73 0.73 0.15 0.44 0.15

0.73 0.68 0.69 -0.05 0.23 -0.03

0.73 0.69 0.71 -0.14 0.17 -0.11

0.15 -0.05 -0.14 0.89 0.75 0.79

0.44 0.23 0.17 0.75 0.75 0.67

0.15 -0.03 -0.11 0.79 0.67 0.70

=

=

The reproduced correlation matrix

Note: The closer that these reproduced correlations match the original correlations, the 
better the factor analysis captured the relationship among the variables. This difference 
comes out in the residual correlations. The goal is to get these as small as possible.
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Oblique Rotation

• The aim of a factor analysis is to arrive at a smaller 
number of interpretable factors. The two key words here 
are smaller and interpretable. This led to the two issues:
- the number of factors problem; and

- the rotation problem.

• The criteria for interpretability involved simple structure 
and an orthogonal rotation was one solution. However, 
an orthogonal solution may not be the most interpretable.
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Orthogonal Rotation
Factor 1
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V2

V3

V4

V5
V6

Oblique Rotation

Oblique Rotation
Geometrical Representation

45



Oblique Rotation
Euler Representation

Orthogonal Rotation Oblique Rotation

Correlation 
between factors
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Oblique Rotation
Matrix Representation

Arotated = AunrotatedΛ

Rreproduced = CA′ = AΦA′

Φ = Factor correlation matrix

C = Structure matrix

A = Pattern matrix
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Oblique Rotation
Matrix Representation

1 2

0.19 0.88

-0.03 0.83

-0.12 0.85

0.95 -0.11

0.81 0.24

0.84 -0.08

AobliqueRot Once we"ve generated the loading matrix which becomes the pattern 
matrix with an oblique rotation, we can generate the factor scores in the 
same way as we did previously:

1 2

0.19 0.88

-0.03 0.83

-0.12 0.85

0.95 -0.11

0.81 0.24

0.84 -0.08

AobliqueRot

2.70 -1.03 -1.18 -0.13 -0.61 -0.05

-1.03 1.76 -0.15 0.24 -0.08 0.02

-1.18 -0.15 1.95 0.63 -0.16 -0.12

-0.13 0.24 0.63 3.47 -1.82 -1.52

-0.61 -0.08 -0.16 -1.82 2.50 0.17

-0.05 0.02 -0.12 -1.52 0.17 1.99

R−1

× =

1 2

0.04 0.38

-0.06 0.37

-0.10 0.39

0.42 -0.10

0.34 0.07

0.37 -0.08

B

R−1A = B

and then the factor scores:

1 2

0.04 0.38

-0.06 0.37

-0.10 0.39

0.42 -0.10

0.34 0.07

0.37 -0.08

B
Participant

1 -0.10 -1.62 -1.78 0.78 1.45 -0.16

2 0.50 -0.19 0.31 -0.07 -0.28 0.37

3 -1.22 -0.32 -1.77 0.93 -0.28 0.37

4 0.77 1.10 -0.62 -0.99 -1.15 -0.30

5 0.34 0.25 1.16 0.87 0.55 0.86

6 0.17 0.24 -0.51 1.31 0.96 1.65

7 1.24 0.76 -1.05 1.35 0.70 1.70

8 0.63 0.37 -0.68 -1.38 -0.17 -1.21

9 0.59 1.30 1.56 -0.90 -0.53 -0.01

10 0.97 1.55 -0.21 0.07 -0.06 -0.18

11 0.74 0.35 -0.32 1.47 1.06 1.28

12 -0.50 0.24 0.02 0.47 0.32 -0.14

13 0.56 0.72 -0.58 -0.49 0.36 -1.63

14 0.63 0.87 0.13 0.02 -0.37 0.12

15 -0.37 -0.60 -0.88 1.58 1.08 1.70

16 0.98 1.62 0.52 -0.72 -1.77 -0.86

17 -0.62 -1.29 -0.06 -0.22 -0.41 -0.60

18 1.98 0.38 1.18 0.96 1.11 0.09

19 0.75 -0.67 1.19 2.56 2.06 2.75

20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60

100 0.36 0.69 -1.27 0.32 -0.11 -0.14

...
...

...
...

...
...

...

Participant 1 2

1 1.02 -1.29

2 0.01 0.20

3 0.58 -1.41

4 -0.90 0.51

5 0.76 0.56

6 1.54 -0.24

7 1.54 0.13

8 -1.02 0.34

9 -0.77 1.36

10 -0.09 0.87

11 1.50 0.12

12 0.22 -0.11

13 -0.65 0.47

14 -0.11 0.58

15 1.78 -0.93

16 -1.33 1.20

17 -0.40 -0.70

18 0.76 1.33

19 2.76 0.17

20 0.06 -1.00

100 0.14 -0.12

...
...

Z

× =

F

ZB = F
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Oblique Rotation
Matrix Representation

Now - because we"ve relaxed the requirement of orthogonal factors by using an oblique 
rotation, the factors are now correlated with one another (i.e., the angle between the 
factors is no longer 90˚). And so we can see what the correlation is between our factors:

Participant 1 2

1 1.02 -1.29

2 0.01 0.20

3 0.58 -1.41

4 -0.90 0.51

5 0.76 0.56

6 1.54 -0.24

7 1.54 0.13

8 -1.02 0.34

9 -0.77 1.36

10 -0.09 0.87

11 1.50 0.12

12 0.22 -0.11

13 -0.65 0.47

14 -0.11 0.58

15 1.78 -0.93

16 -1.33 1.20

17 -0.40 -0.70

18 0.76 1.33

19 2.76 0.17

20 0.06 -1.00

100 0.14 -0.12

...
...

F
×Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 100

1 1.02 0.01 0.58 -0.90 0.76 1.54 1.54 -1.02 -0.77 -0.09 1.50 0.22 -0.65 -0.11 1.78 -1.33 -0.40 0.76 2.76 0.06 0.14

2 -1.29 0.20 -1.41 0.51 0.56 -0.24 0.13 0.34 1.36 0.87 0.12 -0.11 0.47 0.58 -0.93 1.20 -0.70 1.33 0.17 -1.00 -0.12

. . .

. . .

. . .

F′
(

1
N − 1

)× = 1 2

1 1.00 0.09

2 0.09 1.00

Φ

Here we see that the correlation between the 
factors is rather low. The factors are almost 
orthogonal which is substantially less complex.

As T&F indicate: Ordinarily one uses orthogonal 
rotation in a case like this because complexities 
introduced by oblique rotation are not warranted 
by such a low correlation among factors.
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Oblique Rotation
Matrix Representation

However, if we do use an oblique rotation, we also get the structure matrix    , which 
represents the correlations between the variables and the factors.

C

1 2

0.19 0.88

-0.03 0.83

-0.12 0.85

0.95 -0.11

0.81 0.24

0.84 -0.08

AobliqueRot

×

Φ
1 2

1 1.00 0.09

2 0.09 1.00

=

C
1 2

0.11 0.87

-0.11 0.84

-0.20 0.87

0.96 -0.20

0.79 0.17

0.85 -0.16

As with the orthogonal rotation, we can generate the “reproduced correlation matrix”...
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Oblique Rotation
Matrix Representation

1

p

1 p

R

1

p

1 p

A

1

p

1 p

A′
AA′ = R

1

p

1 p

1

p

1

pA ′

1

p

1

pC

R CA′
obliqueRot = R

R

Me again...

DATA = MODEL + RESIDUAL 
...it"s what is left after the model has been fitted.  

= + ER
Rfull Rreproduced Rresidual= +
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Rfull Rreproduced Rresidual

1 0.64 0.65 0.15 0.40 0.14

0.64 1 0.49 -0.04 0.19 -0.01

0.65 0.49 1 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1 0.71 0.70

0.40 0.19 0.15 0.71 1 0.47

0.14 -0.01 -0.04 0.70 0.47 1

0.78 0.71 0.72 0.01 0.30 0.02

0.71 0.70 0.72 -0.20 0.12 -0.16

0.72 0.72 0.76 -0.29 0.05 -0.24

0.01 -0.20 -0.29 0.93 0.73 0.83

0.30 0.12 0.05 0.73 0.68 0.65

0.02 -0.16 -0.24 0.83 0.65 0.73

0.22 -0.07 -0.07 0.14 0.10 0.12

-0.07 0.30 -0.23 0.16 0.08 0.15

-0.07 -0.23 0.24 0.16 0.10 0.20

0.14 0.16 0.16 0.07 -0.02 -0.12

0.10 0.08 0.10 -0.02 0.32 -0.18

0.12 0.15 0.20 -0.12 -0.18 0.27

= +

+=

Note: The closer that these reproduced correlations match the original correlations, the 
better the factor analysis captured the relationship among the variables. This difference 
comes out in the residual correlations. The goal is to get these as small as possible.

Oblique Rotation
Matrix Representation
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To Recap
Steps in Factor Analysis

a. Selecting and measuring the set of variables, 
(designing the study).

Often a FA or a PCA is used in an attempt to !save" poorly designed or conceived 
research. Any variables can be correlated and !factored" and PCA and FA have the 
ability to create apparent order from real chaos. This has given factor analysis a bad 
name.

b. Preparing the correlation matrix

The honesty of correlations, and thus the honesty and trustworthiness of the chosen 
factor solution, depends on the sample size, symmetry of the frequency distributions 
of the variables (skewness), linearity of the relationships and outliers among the 
cases. In line with the general policy on data diagnostics, if transformations are used 
or cases dropped, the analysis should be run with and without the changes to assess 
the effects of distributional problems and outliers.
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To Recap
Steps in Factor Analysis

c. Extracting a set of factors from the correlation matrix,  
(choice of factor model).

The method of factor extraction depends on the assumptions the researcher makes 
about the nature of the variance of an item or variable. This leads to the use of a 
Common Factor Model or a Principal Components Model. We have only discussed 
the PCA model so far.

d. Determining the number of factors to retain

This is a difficult decision and is influenced not only by the numerical information but 
also by the nature of the variables and by the substantive theory underlying the 
study.
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To Recap
Steps in Factor Analysis

e. Rotating the factors to increase interpretability 
(choice of rotation method, orthogonal or oblique)

After extraction, there are an infinite number of rotations available, all accounting for 
the same amount of variance in the original data but with the factors defined 
differently.

f. Interpreting the results

There is no criterion beyond interpretability against which to test the solution. A good 
factor analysis !makes sense". Interpreting the results of PCA and/or FA is often said 
to be more related to an art than a science.
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