Consider an investigation into the nature of intelligence.

ability to recite song ability to hold two speed at completing
lyrics from memory conversations at once crosswords

ability to assemble ability to use a street speed at completing
something from IKEA directory jigsaw puzzles

What might be the ‘underlying factors’?



e Consider six variables that
are intercorrelated.

- Some more than others...

 The aim is to simplify our
description of the information
provided by the variables.

e A further aim may be to
define the constructs which
the variables describe.
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0.42 -0.35 0.38 -0.16 -0.62 0.52
-1.18 -0.53 -2.74 0.87 -0.61 0.51
0.67 1.44 -1.02 -1.11 -1.87 -0.54
0.27 0.26 1.66 0.81 0.58 1.29
0.1 0.25 -0.85 1.26 1.17 2.52
1.11 0.97 -1.66 1.30 0.79 2.60
0.54 0.43 -1.10 -1.51 -0.46 -1.96
0.50 1.72 2.25 -1.02 -0.97 -0.08
0.86 2.07 -0.40 -0.02 -0.30 -0.34
0.64 0.40 -0.56 1.42 1.31 1.95
-0.51 0.25 -0.05 0.39 0.25 -0.28
0.48 0.92 -0.95 -0.59 0.31 -2.62
0.54 1.13 0.1 -0.07 -0.74 0.12
-0.39 -0.92 -1.41 1.54 1.34 2.61
0.87 2.16 0.70 -0.83 -2.75 -1.41
-0.62 -1.88 -0.18 -0.32 -0.80 -1.00
1.80 0.44 1.68 0.90 1.38 0.08
0.65 -1.01 1.70 2.55 2.75 4.25
-1.42 -0.22 -2.00 -0.11 0.69 -1.00
0.29 0.87 -1.99 0.24 -0.37 -0.28
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0.50 -0.19 0.31 -0.07 -0.28 0.37
-1.22 -0.32 -1.77 0.93 -0.28 0.37
0.77 1.10 -0.62 -0.99 -1.15 -0.30
0.34 0.25 1.16 0.87 0.55 0.86
0.17 0.24 -0.51 1.31 0.96 1.65
1.24 0.76 -1.05 1.35 0.70 1.70
0.63 0.37 -0.68 -1.38 -0.17 -1.21
0.59 1.30 1.56 -0.90 -0.53 -0.01
0.97 1.55 -0.21 0.07 -0.06 -0.18
0.74 0.35 -0.32 1.47 1.06 1.28
-0.50 0.24 0.02 0.47 0.32 -0.14
0.56 0.72 -0.58 -0.49 0.36 -1.63
0.63 0.87 0.13 0.02 -0.37 0.12
-0.37 -0.60 -0.88 1.58 1.08 1.70
0.98 1.62 0.52 -0.72 -1.77 -0.86
-0.62 -1.29 -0.06 -0.22 -0.41 -0.60
1.98 0.38 1.18 0.96 1.11 0.09
0.75 -0.67 1.19 2.56 2.06 2.75
-1.47 -0.10 -1.28 -0.02 0.63 -0.60
0.36 0.69 -1.27 0.32 -0.11 -0.14




1 0.64 0.65 0.15 0.40 0.14
0.64 1 0.49 -0.04 0.19 -0.01
0.65 0.49 1 -0.13 0.15 -0.04
0.15 -0.04 -0.13 1 0.71 0.70
0.40 0.19 0.15 0.71 1 0.47
0.14 -0.01 -0.04 0.70 0.47 1
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0.76 0.50 0.02 | -0.05 | -0.40 | -0.01

0.56 0.61 -0.42 | 0.33 0.17 0.02

0.50 0.68 047 | -0.12 | 0.22 0.07

0.65 | -0.68 | -0.06 | -0.05 | 0.01 0.33

079 | -0.34 | -0.18 | -0.40 | 0.12 | -0.21

0.59 | -0.59 | 0.28 0.45 0.00 | -0.15

These loadings represent correlations
between factors and variables
(i.e., between P and X)

1 2 3 4 5 6
-0.12 -1.57 -0.96 -2.06 -1.73 -1.06
0.15 0.13 0.77 0.32 -0.80 -0.03
-0.55 -1.37 -1.20 0.81 0.1 0.98
-0.33 0.93 -1.12 1.59 -1.61 -0.34
0.98 -0.09 1.06 0.09 0.92 0.70
1.02 -1.15 -0.23 0.86 -0.02 -0.32
1.28 -0.89 -1.01 1.50 -1.96 -0.18
-0.55 0.89 -1.36 -0.47 -1.47 -1.52
0.37 1.46 0.64 0.94 0.99 -0.24
0.55 0.68 -1.53 0.89 -0.71 0.42
1.23 -0.87 -0.38 0.40 -0.64 0.22
0.09 -0.22 -0.43 -0.23 1.15 0.65
-0.17 0.75 -2.07 -1.16 -0.76 -0.08
0.32 0.48 -0.40 0.91 -0.47 0.50
0.72 -1.79 0.07 0.36 0.01 -0.26
-0.18 1.70 -0.61 1.61 -0.91 1.86
-0.80 -0.24 0.84 -0.99 -0.16 0.40
1.52 0.46 0.39 -1.15 -1.33 0.83
2.24 -1.64 2.18 -0.26 0.48 0.28
-0.66 -0.75 -1.68 -0.67 1.49 -0.73
0.02 -0.18 -1.79 0.68 -1.24 0.38
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Component 3

1 2 3
-0.12 -1.57 -0.96
0.15 0.13 0.77
-0.55 -1.37 -1.20
-0.33 0.93 -1.12
0.98 -0.09 1.06
1.02 -1.15 -0.23
1.28 -0.89 -1.01
-0.55 0.89 -1.36
0.37 1.46 0.64
0.55 0.68 -1.53
1.23 -0.87 -0.38
0.09 -0.22 -0.43
-0.17 0.75 -2.07
0.32 0.48 -0.40
0.72 -1.79 0.07
-0.18 1.70 -0.61
-0.80 -0.24 0.84
1.52 0.46 0.39
2.24 -1.64 2.18
-0.66 -0.75 -1.68
0.02 -0.18 -1.79
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Another motivational example

Consider an investigation into the nature of intelligence. Data on six measures are collected:

ability to hold two speed at completing
conversations at once crosswords

ability to assemble ability to use a street
something from IKEA directory jigsaw puzzles

What might be the ‘underlying factors’?
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Component 2
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The first principal component finds the
direction in which all the variables seem to
be pointing.

However, the principal components don'’t

seem to be pointing in the ‘right’ direction.

- If we want a principal component (or factor) to be
the thing that our variables have in common, we
would like the principal components to ‘line up’ with
our groups of variables.

Two problems with a PCA solution:

1. (above) ‘lining up’ our components with our groups
of variables.

2. These dimensions are plotted in 2D space. How do
we know how many dimensions are needed to
‘capture’ the structure of the underlying variables?

How do we assign meaning to components?
How do we decide how many components

can adequately account for the variation in
the data?

12



Factor Analysis via PCA

e QOverview

 The ‘number of factors’ problem
 The rotation problem
 Modelling data in factor analysis

 Schematic representation of factor
analysis via PCA

13



Overview
Methods of Factor Analysis

Factor Analysis via PCA Common Factor Analysis
 Based on PCA.  Not based on PCA.
e Called “principal o Called “factor analysis”
components analysis” by by T&F.
T&F.

- involves performing a
principal components
analysis to repartition the
entire variance.

- choosing only some factors
(and discarding the rest).

- rotating the factors to make
them easier to label.




“choosing only some factors (and discarding the rest).”

William of Ockham
(1288 - 1348)

“entia non sunt multiplicanda praeter necessitatem”

“entities should not be multiplied beyond necessity.”
“All things being equal, the simplest solution tends to be the best one.”

The Extended Comparator Hypothesis

B
‘ Directly
.
%  Directly Targ%s(_‘t,s 8l Activated US
o X ‘ : Activated First-Orde Link 1 Representation
e ® 2& : Link 2.1

\ . ‘ : i, Response
5 Link 2.2 Link2 to the
: - Target CS

Effective ;
Ve First-Order Link 3
.\ Comparator Stimulus [~
Representation

Indirectly
Activated US
Representation

AV =aB(A=V)

....................................................

Directly
Activated US
Representation

First-Order
Comparator
Stimulus

In general, mathematical models with the smallest number
of parameters are preferred as each parameter introduced
iInto the model adds some uncertainty to it. Additionally,
adding too many parameters leads to “connect-the-dots”
curve-fitting which has little predictive power.

Indirectly
Activated US
Representation

Link 3.3

.................................................



“If a thing can be done adequately by means of
one, it is superfluous to do it by means of
several; for we observe that nature does not

employ two instruments where one suffices.”
- Thomas Aquinas

“The truth always turns out to

be simpler than you thought.”
- Richard Feynman

“Things should be as simple

as possible, but not simpler.”
- Albert Einstein
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The ‘number of factors’ problem

Choosing the number of factors requires a
personal judgement.

More factors provide more information, but less
factors provide a simpler solution.

How to help decide on the number of factors:

Eigenvalues > 1

Scree Plot

Parallel analysis test
Theoretical considerations

It’s best to compare different solutions before
making a final decision.

17



The ‘number of factors’ problem
Eigenvalues > 1

‘eigenvalues greater than one’ rule...

18



Eigenvalue

The ‘number of factors’ problem
Scree Plot

2 3 4 5
Component

19



'.“ o "';':f-'-
’s Slide
,¥ On April 29, 1903, at 4:10 a.m., 82 million tonnes (30 million o 4
! cubic meters) of limestone crashed from the summit of Turtle 488 ; '
Mountain and covered approximately three square
kilometres of the valley floor. The slide dammed the
Crowsnest River and formed a small lake and buried seven  Ea
houses on the outskirts of the sleeping town of Frank, as well s
as several rural buildings. Frank was home to approximately

600 people in 1903; of the roughly 100 individuals who lived
in the path of the slide, more than 70 were killed.
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Eigenvalue

2.8

2.1

—
~

O
~

The ‘number of factors’ problem
Scree Plot

The plot looks like the side of a mountain,
and “scree” refers to the debris fallen
from a mountain and lying at its base.

The scree test proposes to stop analysis
at the point the mountain ends and the
debris begins.

Component
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The ‘number of factors’ problem
Parallel analysis test

Behavior Research Methods, Instruments, & Computers
2000, 32 (3), 396-402

SPSS and SAS programs for
determining the number of components
using parallel analysis and Velicer’s MAP test

BRIAN P. OCONNOR
Lakehead University, Thunder Bay, Ontario, Canada

Popular statistical software packages do not have the proper procedures for determining the number
of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum
average partial (MAP) test are validated procedures, recommended widely by statisticians. However,
many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-
greater-than-one rule. Use of the proper procedures might be increased if these procedures could be
conducted within familiar software environments. This paper describes brief and efficient programs
for using SPSS and SAS to conduct parallel analyses and the MAP test.

http://people.ok.ubc.ca/brioconn/nfactors/nfactors.html
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http://flash.lakeheadu.ca/~boconno2/nfactors.html
http://flash.lakeheadu.ca/~boconno2/nfactors.html
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The rotation problem

the components are not aligning with the
directions of the two groups of variables is
to rotate the axes so that they do align.

\I
\I
\I
‘I One simple solution to the observation that
|
\I
\I
\I

-0.25

025 050 075 1.00
Component 1

e Factors are rotated to make it easier to label

* Two types of rotation are possible:

1.
2. Obligue: factors are allowed to become correlated

Orthogonal. factors remain uncorrelated.

23



The rotation problem

A

Component 2
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Factor 2
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The rotation problem
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Spatial

The meanings of the variables that load
highly on a factor are taken to define
the meaning of that factor or to label
the factor. Obviously, we need to know
and are clear about what the variables
mean or what the variables measure.
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Orthogonal rotation to simple structure:
variance accounted for by the factors = SS loadings

In a rotated structure matrix, the sum
of squared loadings give the amount of
the total variance accounted for by that
rotated factor and is a measure of the
relative importance of the factor.

In an unrotated structure matrix,
the the eigenvalues are the sum
of squared loadings (SSLs) of
the variables for each factor.

* ..

26



Orthogonal rotation:
Euler Representation

Unrotated Solution Rotated Solution
(orthogonal)



Orthogonal rotation:
Matrix Representation

Arotated — Aunrotated A

A = the factor transformation matrix

- represents the angles that the axes are rotated.
- this isn’t interpreted.

Arotated Aunrotated A
1 2 1 2 1 2

0.23 0.88 J— 0.76 0.50 >< 0.74 0.67
0.00 0.83 0.56 0.61 -0.67 0.74
-0.08 0.84 0.50 0.68

= 0.94 -0.07 A * 0.65 -0.68
0.82 0.28 0.79 -0.34
0.84 -0.04 0.59 -0.59

28



Orthogonal rotation:
Loading Matrices

Aunrotated Arotated

Remember: 1 5 1 5
These loadings are
regressmn_—llke weights 076 | 0.50 093 | 0.88
used to estimate the
unique contribution of

0.56 | 0.61 0.00 | 0.83
each factor to the
variance of the variable.

0.50 | 0.68 -0.08 | 0.84
They represent
correlations between the 0.65 | -0.68 0.94 | -0.07
factors and the variables.

0.79 | -0.34 0.82  0.28

0.59 | -0.59 0.84 | -0.04

High loadings

are interpreted



The rotation problem

A

Component 2
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(orthogonal)



Importance of factors

In an orthogonally rotated factor solution, the Sum of Squared Loadings
(SSLs) give the amount of variance accounted for by the rotated factor.

Aunrotated Arotated
1 2 1 2

0.76 | 0.50 0.23 | 0.88

0.56 | 0.61 0.00 | 0.83

0.50 | 0.68 -0.08 | 0.84

0.65 | -0.68 0.94 | -0.07

0.79 | -0.34 0.82 | 0.28

0.59 | -0.59 0.84 | -0.04

Sum of Square Loadings 255 2.02 231 2.26

/6

42.4% 33.7%

4

38.5% 37.6%

€
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Factor Scores
* We can generate factor scores for each case using
the loading matrix.

* This gives us regression-like coefficients for weighing
our variable scores to produce factor scores.

R 'A =8B

" 1 > 1 >
-1.03 | -1.18 | -0.13 | -0.61 | -0.05 0.23 0.88 0.06 0.39
1.76 | -0.15 | 0.24 | -0.08 | 0.02 0.00 | 0.83 0.04 | 0.37
-0.15 | 1.95 | 0.63 | -0.16 | -0.12 >< 0.08 | 0.84 — -0.08 | 0.38
024 | 0.63 | 3.47 | -1.82 | -1.52 AR | 04 | 007 ADR | 042 | 008
-0.08 | -0.16 | -1.82 | 250 | 0.17 0.82 0.28 0.34 0.08
0.02 | -0.12 | -1.52 | 0.17 | 1.99 0.84 | -0.04 0.37 | -0.06




Factor Scores

* |f we multiply each subject’s original standardised score
by these coefficients, then we get the factor scores.

ZB =F
Z B F

Participant Y 1 2 Participant 1 2
¥
; 6o 1 0.96 -1.25
2 0.50 -0.19 0.31 -0.07 -0.28 0.37 0.06 0.39 2 0.02 020
3 -1.22 -0.32 -1.77 0.93 -0.28 0.37 3 051 138
4 0.77 1.10 -0.62 -0.99 -1.15 -0.30 4 087 046
5 0.34 0.25 1.16 0.87 0.55 0.86 -0.04 0.37 5 0-79 0-59
6 0.17 0.24 -0.51 1.31 0.96 1.65 6 152 017
7 1.24 0.76 -1.05 1.35 0.70 1.70 7 155 0-20
8 0.63 0.37 -0.68 -1.38 -0.17 -1.21 -0.08 0.38 8 -1.01 029
9 0.59 1.30 1.56 -0.90 -0.53 -0.01 9 0.7 1.33
10 0.97 1.55 -0.21 0.07 -0.06 -0.18 >< p— 10 -0.05 0.87
1 0.74 0.35 -0.32 1.47 1.06 1.28 0.42 -0.08 " 1.50 0.18
12 -0.50 0.24 0.02 0.47 0.32 -0.14 12 0.21 -0.10
13 0.56 0.72 -0.58 -0.49 0.36 -1.63 13 -0.63 0.44
14 0.63 0.87 0.13 0.02 -0.37 0.12 0.34 0.08 14 -0.09 0.58
15 -0.37 -0.60 -0.88 1.58 1.08 1.70 15 1.73 -0.84
16 0.98 1.62 0.52 -0.72 -1.77 -0.86 16 -1.28 1.14
17 -0.62 -1.29 -0.06 -0.22 -0.41 -0.60 0.37 -0.06 17 -0.43 -0.72
18 1.98 0.38 1.18 0.96 1.11 0.09 18 0.82 136
19 0.75 -0.67 1.19 2.56 2.06 2.75 19 276 0.29
20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60 20 0.01 -1.00
100 0.36 0.69 -1.27 0.32 -0.11 -0.14 100 014 012




Factor Scores

* |f we multiply each subject’s original standardised score
by these coefficients, then we get the factor scores.

/B =F

1.0
0.8 F
06 Participan 1 2
This means that the first participant — « “os | =
. has an estimated standard score R
0.2 of .96 on the first factor ( ), and s om T oss
o -1.25 on the second factor ( ). o [ 1= [ o
& 0 8 -1.01 0.29
@© . . . . 9 -0.71 1.33
L This particular participant seems to 0 | oo | ow
02 be more verbally inclined than they B
are spatially. 5o | os | o
o o Tim | om
>0 e
-0.8 u 20 0.f)1 -1.:oo
-1.0 : -
0

-0.25 025 050 0.75 1.00

Factor 1



Factor Scores

 We can also predict each participant’s score on each
variable using these factor scores.

/
FA' = predicted

/
K rotated Zpredicted

Participant = 3
Participant 1 2 \‘_b/ 7
1 -1.02 -1.13 0.99 0.44 0.86
1 0.96 -1.25 2 0.18 0.16 0.16 0.01 0.07 0.01
) ooz | o020 1 | 023|000 |-0.08| 094 | 0.82 | 0.84 — s Py o o g 003 oo
3 0.51 -1.38 4 0.21 0.38 0.46 -0.85 -0.58 -0.75
4 -0.87 0.46 2 0.89 | 0.83 | 0.84 | -0.07 | 0.28 | -0.04 5 0.70 0.49 0.43 0.70 0.81 0.63
5 0.79 0.59 6 0.20 -0.13 -0.27 1.44 1.20 1.28
6 1.52 -0.17 7 0.54 0.17 0.04 1.44 1.32 1.29
7 1.55 0.20 8 0.03 0.24 0.33 -0.96 -0.74 -0.85
8 -1.01 0.29 9 1.01 1.09 1.18 -0.76 -0.20 -0.65
9 071 133 10 0.76 0.72 0.74 -0.11 0.20 -0.08
10 -0.05 0.87 1 0.51 0.16 0.03 1.40 1.28 1.25
1" 150 018 12 -0.04 -0.08 -0.10 0.21 0.15 0.18
13 0.24 0.36 0.42 -0.62 -0.39 -0.55
12 0.21 -0.10
0.49 0.47 0.49 -0.12 0.09 -0.10
13 -0.63 0.44 14
15 -0.35 -0.69 -0.86 1.69 1.18 1.48
14 -0.09 0.58
16 0.72 0.93 1.06 -1.28 -0.73 -1.12
15 1.73 -0.84
17 -0.74 -0.60 -0.57 -0.35 -0.56 -0.33
16 -1.28 1.14
18 1.39 1.13 1.08 0.67 1.05 0.62
17 -0.43 -0.72
19 0.89 0.25 0.02 258 2.34 2.30
18 0.82 1.36
20 -0.88 -0.83 -0.84 0.08 -0.27 0.05
19 2.76 0.29
20 0.01 -1.00
100 -0.07 -0.10 -0.11 0.14 0.08 0.12
100 0.14 -0.12




Factor Scores

 We can also predict each participant’s score on each
variable using these factor scores.

/
FA' = Zpredicted

1.0
Zpredicted
0.8 : =
This means that /l O T R N T
0.4 i the first participant# : &+ = oo
() ispredictedtohave : e e e e
v a standardised B
g scoreof -880n e e e
= lyric recollection, W o | ow | ow | e | | s
0.2 -1.02 on holding o [om [ ew | ek | e | ow | om
two conversations . o ws  ew e e
o at once, etc. for o e T owm | ew | aw | om | s
0.6 each of the six O T B T B T B T B o
variables. i 2 i == = =z =
0.8 u 100 Y™ o1 py” ord o Bz
-1.0 Note: The closer that these predicted Z scores match the actual Z scores,
025 0 025 050 075 1.00 the better the factor analysis captured the relationship among the variables.

Factor 1
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Factor Scores

 We can also predict each participant’s score on each
variable using these factor scores.

/
FA' = Zpredicted

We're calculating these using the regression method.

Zj %FlFQFm

Remember me?

DATA = MODEL + RESIDUAL

...It’'s what is left after the model has been fitted.

Z = FA' + K




Communalities

Consider the previous regression equation:
Zj — FlFQFm

There’s an R? value for each variable.

- How much of the variance of a variable is accounted for by the factors.

- How much the variable has in common with the factors.

It is called the communality of the variable, h°.
For orthogonal solutions,

2 2 2
hj =aj + -+ ajp,

The sum of squared loadings

38



Communalities

Arot ated
1 2

0.23 | 0.88

0.00 | 0.83

-0.08 | 0.84

0.94 | -0.07

0.82 | 0.28

0.84 | -0.04

Sum of Square Loadings 231 2.26

/6 38.5% 37.6%

ZaQ — 232 1 882 = 836

That is, 83.6% of the variance in
‘lyric recall’ is accounted for by
Factor 1 plus Factor 2.

This gives us an indication of how
much ‘lyric recall’ has in common
with the two factors.
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Sum of Square Loadings
/6

Communalities

Arot ated
1 2 h2
0.23 | 0.88 | 0.836
0.00 | 0.83 | 0.681
-0.08 | 0.84 | 0.714
0.94 | -0.07 | 0.887
0.82 | 0.28 | 0.748
0.84 | -0.04 | 0.699
2.31 2.26 4.564

38.5% 37.6% 76.11%

ZaQ — 232 1 882 = 836

That is, 83.6% of the variance in
‘lyric recall’ is accounted for by
Factor 1 plus Factor 2.

This gives us an indication of how
much ‘lyric recall’ has in common
with the two factors.

Z a2 = 2324 0024+ —.082 4 .942 + 822 4 842 =231 = )
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The reproduced correlation matrix

* For a full principal components analysis with p
components retained, the original R matrix could be
expressed in terms of the matrix A.

1

p

* |n factor analysis, when m factors are retained, a
reproduced correlation matrix can be calculated:

/ __
Arotated Arotated — B
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The reproduced correlation matrix

/
AI‘OtatedArotated =R

R =

DATA = MODEL + RESIDUAL

...I's what is left after the model has been fitted.

Rfull :Rreproduced _l_ Rresidual

Me again...

R + E
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The reproduced correlation matrix

— Rreproduced _|_ Rresidual

084 | 0.73 | 0.73 | 0.15 | 0.44 | 0.15

-0.09 | -0.07 | -0.00 | -0.03 | -

0.73 | 0.68 | 0.69 | -0.05 | 0.23 | -0.03 0.32 | -0.20 | 0.02 | -0.04

0.73 | 0.69 | 0.71 | -0.14 | 0.17 | -0.11 -0.20 | 0.29 | 0.01 | -0.02

0.07

9| 0.15 | -0.05 | -0.14 | 0.89 | 0.75 | 0.79 0.02 | 0.01 | 0.11 | -0.04

-0.09

044 | 023 | 0.17 | 0.75 | 0.75 | 0.67 -0.04 | -0.02 | -0.04 | 0.25

-0.20

0.15 | -0.03 | -0.11 | 0.79 | 0.67 | 0.70 0.03 | 0.07 | -0.09 | -0.20

0.30

Note: The closer that these reproduced correlations match the original correlations, the
better the factor analysis captured the relationship among the variables. This difference
comes out in the residual correlations. The goal is to get these as small as possible.
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Oblique Rotation

 The aim of a factor analysis is to arrive at a smaller
number of interpretable factors. The two key words here

are smaller and interpretable. This led to the two issues:

the number of factors problem; and
the rotation problem.

* The criteria for interpretability involved simple structure
and an orthogonal rotation was one solution. However,
an orthogonal solution may not be the most interpretable.
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Oblique Rotation

Geometrical Representation

Factor 2

A
Factor 1 o

Orthogonal Rotation Obligue Rotation
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Oblique Rotation

Euler Representation

Correlation
between factors

\

Orthogonal Rotation Oblique Rotation



Oblique Rotation

Matrix Representation

Arotated — Aunrotated A

Rreproduced = CA' = APA’

$ = Factor correlation matrix
C = Structure matrix
A = Pattern matrix
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Oblique Rotation

Matrix Representation

AobliqueRot Once we’ve generated the loading matrix which becomes the pattern
matrix with an oblique rotation, we can generate the factor scores in the
same way as we did previously:

1
019 | 0.88 R A obliqueRot B

BGDON 1K P
-0.05

-0.03 0.83 s} 270 | -1.03 | -1.18 | 0.13 | -0.61 L) | 019 | o088 =} | 004 | 038
-1.03| 1.76 | -0.15 | 0.24 | -0.08 | 0.02 003 | 083 2 | 006 | 037 _ 1

-0.12 0.85 . |-1.18|-0.15| 1.95 | 0.63 | -0.16 | -0.12 X 012 | 085 | — .| 010 | 030 R A_ — B
| 0.13| 0.24 | 0.63 | 3.47 | -1.82 | -1.52 | 095 | 011 042 | -0.10

0.95 -0.11 _ 3}|-061-008 016|182 250 | 0.7 | 081 | 024 B | 031 | 007
-0.05 | 0.02 |-0.12 | -1.52 | 0.17 | 1.99 0.84 | -0.08 0.37 | -0.08

0.81 0.24

0.84 | -0.08 Z B F

£
Partici| pant ”' 4 @ @ 1 2 Participant 1 2
1S % ¢

~ 1 1.02 -1.29
1 -0.10 -1.62 -0.16 o
2 050 -0.19 031 -0.07 -0.28 0.37 L 0.04 0.38 2 0.01 0-20
3 122 -0.32 477 0.93 -0.28 037 3 0.58 A
4 077 1.10 -0.62 -0.99 -1.15 -0.30 4 -0-90 051
5 034 025 116 087 055 086 -0.06 | 0.37 5 076 056
6 017 024 -0.51 131 0.96 1.65 6 1.54 -0.24
7 1.24 076 -1.05 1.35 070 1.70 7 1.54 013
8 063 0.37 -0.68 -1.38 017 4121 -0.10 0.39 8 .02 034
9 059 1.30 1.56 -0.90 -0.53 -0.01 9 077 1.36 -
10 097 155 -0.21 0.07 -0.06 -0.18 >< f— 10 -0.09 0.87
1 074 0.35 -0.32 1.47 1.06 1.28 0.42 -0.10 n 1.50 0.12
12 -0.50 0.24 0.02 0.47 0.32 0.14 12 0.22 0.1
13 0.56 0.72 -0.58 -0.49 0.36 -1.63 13 -0.65 0.47
14 0.63 0.87 0.13 0.02 -0.37 0.12 0.34 0.07 14 011 0.58
15 -0.37 -0.60 -0.88 1.58 1.08 1.70 15 1.78 -0.93
16 0.98 1.62 0.52 -0.72 -1.77 -0.86 16 -1.33 1.20
17 -0.62 1.29 -0.06 -0.22 -0.41 -0.60 0.37 -0.08 17 -0.40 -0.70
18 1.98 0.38 1.18 0.96 1.1 0.09 18 0.76 1.33
19 0.75 -0.67 1.19 256 2.06 275 19 276 0.17
20 -1.47 -0.10 -1.28 -0.02 0.63 -0.60 20 0.06 -1.00
100 0.36 0.69 -1.27 0.32 0.1 -0.14 100 0.14 -0.12
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Oblique Rotation

Matrix Representation

Now - because we’ve relaxed the requirement of orthogonal factors by using an oblique
rotation, the factors are now correlated with one another (i.e., the angle between the
factors is no longer 90°). And so we can see what the correlation is between our factors:

/
F F b
< 1 ) X i mlooaelanlonlshalomfonlan afon foulan oalosfonlonlonfonl o] X patopan| 1 | 2 | — 1] 2
N=1 L | 100 009
_ j ZE:) :.:11 2 | 0.09 | 1.00
Here we see that the correlation between the i I
factors is rather low. The factors are almost 7| s | o
orthogonal which is substantially less complex. o [Tam |
As T&F indicate: Ordinarily one uses orthogonal w | om | o
rotation in a case like this because complexities w [an [ o
introduced by oblique rotation are not warranted o e
by such a low correlation among factors. O e




Oblique Rotation

Matrix Representation

However, if we do use an oblique rotation, we also get the structure matrix C, which
represents the correlations between the variables and the factors.

AobllqueRot P C
1 2 1| 2 1 2
1 1.00 | 0.09
0.19 0.88 >< J— 0.11 0.87
2 0.09 | 1.00
-0.03 | 0.83 -0.11 0.84
-0.12 | 0.85 -0.20 | 0.87
0.95 -0.11 0.96 | -0.20
0.81 0.24 0.79 0.17
0.84 | -0.08 0.85 | -0.16

As with the orthogonal rotation, we can generate the “reproduced correlation matrix”...



Oblique Rotation

Matrix Representation

CA/

obliqueRot

DATA = MODEL + RESIDUAL

...It’'s what is left after the model has been fitted.

R =

Rfull :Rreproduced ‘|‘ Rresidual

Me again...

R + K

=R
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Oblique Rotation

Matrix Representation

=~
=)
|

Rreproduced _|_ Rresidual

0.78 | 0.71 | 0.72 | 0.01 | 0.30 | 0.02

0.71 | 0.70 | 0.72 | -0.20 | 0.12 | -0.16

0.20

0.72 | 0.72 | 0.76 | -0.29 | 0.05 | -0.24 —|— -0.07 | -0.23 | 0.24 | 0.16 | 0.10

8 001 |-020|-029| 093|073 083 ;)| 0.14 | 0.16 | 0.16 | 0.07 | -0.02

-0.12

0.30 | 0.12 | 0.05 | 0.73 | 0.68 | 0.65 0.10 | 0.08 | 0.10 | -0.02 | 0.32

-0.18

0.02 | -0.16 | -0.24 | 0.83 | 0.65 | 0.73

0.12 | 0.15 | 0.20 | -0.12 | -0.18

0.27

Note: The closer that these reproduced correlations match the original correlations, the
better the factor analysis captured the relationship among the variables. This difference
comes out in the residual correlations. The goal is to get these as small as possible.
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To Recap

Steps in Factor Analysis

a. Selecting and measuring the set of variables,
(designing the study).

Often a FA or a PCAis used in an attempt to ‘save’ poorly designed or conceived
research. Any variables can be correlated and ‘factored’ and PCA and FA have the
ability to create apparent order from real chaos. This has given factor analysis a bad
name.

b. Preparing the correlation matrix

The honesty of correlations, and thus the honesty and trustworthiness of the chosen
factor solution, depends on the sample size, symmetry of the frequency distributions
of the variables (skewness), linearity of the relationships and outliers among the
cases. In line with the general policy on data diagnostics, if transformations are used
or cases dropped, the analysis should be run with and without the changes to assess
the effects of distributional problems and outliers.
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To Recap

Steps in Factor Analysis

c. Extracting a set of factors from the correlation matrix,
(choice of factor model).

The method of factor extraction depends on the assumptions the researcher makes
about the nature of the variance of an item or variable. This leads to the use of a
Common Factor Model or a Principal Components Model. We have only discussed

the PCA model so far.

d. Determining the number of factors to retain

This is a difficult decision and is influenced not only by the numerical information but
also by the nature of the variables and by the substantive theory underlying the

study.
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To Recap

Steps in Factor Analysis

e. Rotating the factors to increase interpretability
(choice of rotation method, orthogonal or oblique)
After extraction, there are an infinite number of rotations available, all accounting for

the same amount of variance in the original data but with the factors defined
differently.

f. Interpreting the results

There is no criterion beyond interpretability against which to test the solution. A good
factor analysis ‘makes sense’. Interpreting the results of PCA and/or FA is often said
to be more related to an art than a science.
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