
Admin

• Assignment 1 and Matrix Quiz:
- We will post your marks on Blackboard as soon as we can.

• Assignment 2:
- Due 13 May.
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A very brief intro to
SDT (Signal Detection Theory)

If you have encountered SDT before, it was likely in the context of 
collecting formal data.  We will discuss it as a representation of one type 
of decision problem, without the presumption that formal data is being 
collected.

Reality

Enemy
Present

Enemy
Absent

Decision

Yes

No

Hit

Correct
Rejection

False
Alarm

Miss
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A very brief intro to
SDT (Signal Detection Theory)

If you have encountered SDT before, it was likely in the context of 
collecting formal data.  We will discuss it as a representation of one type 
of decision problem, without the presumption that formal data is being 
collected.

Reality

Stimulus
Present

Stimulus
Absent

Decision

Yes

No

Hit

Correct
Rejection

False
Alarm

Miss
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Reality

+ –

Decision

Yes

No

Hit

Correct
Rejection

False
Alarm

Miss
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Noise Signal

Weak Evidence 
of Signal

Degree of Evidence

Strong Evidence 
of Signal

No Yes

Decision
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So what can we vary?
(to represent different decision problems)
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1. Degree of overlap
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Weak Evidence 
of Signal

Degree of Evidence

Strong Evidence 
of Signal

No Yes
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1. Degree of overlap

Correct
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Weak Evidence 
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Degree of Evidence

Strong Evidence 
of Signal

No Yes
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Correct
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Alarm
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2. Location of the Criterion
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Weak Evidence 
of Signal

Degree of Evidence

Strong Evidence 
of Signal

2. Location of the Criterion

No Yes

Decision

Correct
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Hit

False
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3. Size of curves: base rates
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Weak Evidence 
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Degree of Evidence

Strong Evidence 
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No Yes
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Correct
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4. Spread (variance) of curves
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Weak Evidence 
of Signal

Degree of Evidence

Strong Evidence 
of Signal

No Yes
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Correct
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False
Alarm
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Weak Evidence 
of Signal

Degree of Evidence

Strong Evidence 
of Signal

No Yes

Decision

4. Spread (variance) of curves

Correct
Rejection

Hit

False
Alarm

Miss
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To anticipate problems you are likely to have.  For 
example: Is the effect you are looking for likely to be 
tough to detect; are you likely to get a lot of false alarms; 
can you anticipate having to set a very conservative 
criterion; is it likely you will have to look at a lot of cases?

Why worry about this 
kind of representation?
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Non-Terrorist 
characteristics Degree of evidence

for distinguishing terrorists

Terrorist
characteristics

not
terrorists
(500,000)

actual
terrorists

(19)

No Yes

Decision

Treat as potential terroristTreat as non-terrorist

3

16

482,000

18,000
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actual
terrorists

(19)

not
terrorists
(500,000)

2

472,500

27,500

No Yes

Decision

Treat as potential terroristTreat as non-terrorist

17

Non-Terrorist 
characteristics Degree of evidence

for distinguishing terrorists

Terrorist
characteristics
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actual
terrorists

(19)

not
terrorists
(500,000)

1

459,500

40,500

18

No Yes

Decision

Treat as potential terroristTreat as non-terrorist

Non-Terrorist 
characteristics Degree of evidence

for distinguishing terrorists

Terrorist
characteristics
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John Reid yesterday accused the government’s anti-terror critics of putting 
national security at risk by their failure to recognise the serious nature of the 
threat facing Britain. “They just don’t get it,” he said.

The home secretary yesterday gave the thinktank Demos his strongest hint yet 
that a new round of anti-terror legislation is on the way this autumn by 
warning that traditional civil liberty arguments were not so much wrong as just 
made for another age.

“Sometimes we may have to modify some of our own freedoms in the short term 
in order to prevent their misuse and abuse by those who oppose our 
fundamental values and would destroy all of our freedoms in the modern 
world,” he said.

Anti-terror critics just don't get it, says Reid

Alan Travis, home affairs editor
Thursday August 10, 2006

The Guardian 
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actual
terrorists

(19)

not
terrorists
(500,000)
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actual
terrorists

(19)

not
terrorists
(500,000)

1

459,500

40,500

18

No Yes

Decision

Treat as potential terroristTreat as non-terrorist

Non-Terrorist 
characteristics Degree of evidence

for distinguishing terrorists

Terrorist
characteristics

It's very easy to forget the high prior probability of a non-linear tradeoff:  allowing at least a 
few errors of one kind will probably produce a big reduction in the number of the other type.
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Research Questions  

• Is the overall relationship statistically significant and 
how strong is the relationship?

• What variables are individually important in 
separating (discriminating) between the groups?

A simple example
2 group Discriminant Analysis

Two groups of inmates:
- Group 1 = convicted for murder

- Group 2 = convicted for fraud

Two measured variables:
- a measure of intelligence

- a measure of aggression
(Y1)
(Y2)

X
categorical

2 levels

Y1Y2 ←
2 continuous 

variables
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Group

Classification

“Murderer” Hit

Correct
Rejection

False
Alarm

Miss“Fraudster”

Murderer Fraudster
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A B

B′

A′

V1

V2

Z

Discriminant Function
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked

44



Purposes of principal components 
analysis and factor analysis

• To simplify a data set, by reducing multidimensional 
data to lower dimensions for analysis.
- reduce a large number of variables to a smaller number with maximum 

spread among cases.

• To summarise patterns of intercorrelations among 
variables.

• To provide an operational definition for an 
unobserved, hypothetical construct using observed 
variables.

• To test a theory about the nature of the underlying 
variables.
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Distinctiveness, typicality, and recollective experience in face 

recognition: A principal components analysis

In this study, participants rated previously unseen faces on six dimensions: familiarity, distinctiveness, 

attractiveness, memorability, typicality, and resemblance to a familiar person. The faces were then 
presented again in a recognition test in which participants assigned their positive recognition decisions 

to either remember (R), know (K), or guess categories. On all dimensions except typicality, faces that 
were categorized as R responses were associated with significantly higher ratings than were faces 

categorized as K responses. Study ratings for R and K responses were then subjected to a principal 
components analysis. The factor loadings suggested that R responses were influenced primarily by the 

distinctiveness of faces, but K responses were influenced by moderate ratings on all six dimensions. 
These findings indicate that the structural features of a face influence the subjective experience of 

recognition.

Procrastination, a principal components analysis

The revised Eysenck Personality Questionnaire (EPQ), the Beck Depression Inventory, the Jenkins 
Activity Survey, and 3 time-usage measures constructed by the present authors were administered to 

227 undergraduates who were chronic academic procrastinators. Three principal components were 
found, suggesting orthogonal personality variables associated with different types of procrastination 

(high EPQ psychoticism, neurotic extraverted, and depressed procrastination). Findings are discussed 
in terms of treatment for procrastinators.

What sort of questions are being investigated?
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Perceived cognitive function is a major determinant of health related 

quality of life in a non-selected population of patients with coronary 

artery disease: A principal components analysis

Four independent principal factors representing perceived cognitive, physical, social and emotional 

functions underlying the patients' HRQL were found. Identical factors were recognized with an alternate 
technique. The major factor - explaining 43% of HRQL - was perceived cognitive function reflecting 

ability to concentrate, activity drive, memory and problem solving. Cognitive function correlated to EQ 
but not to CCS. Perceived physical function/general health explained 9% of HRQL and was as expected 

related both to EQ and CCS. Total CHP scores differed significantly to those of healthy controls. 
Conclusions: Perceived cognitive function seems to be a major determinant of HRQL in CAD patients. 

This, in addition to earlier reports of possible prognostic information of reduced cognitive function, 
would prompt us to propose that HRQL assessments should include questions aimed to assess cognitive 

function.

A new whole-mouth gustatory test procedure: Thresholds and principal 

components analysis in healthy men and women

Gustatory testing using the whole-mouth method was performed in 123 healthy young adult males and 
females. The average thresholds for detection and recognition of the 4 basic tastes were not greatly 

different from the normal thresholds previously reported in Japan. Results indicate that the whole-
mouth gustatory test procedure employed in this study may be useful for evaluating gustatory function 

clinically. Principal components analysis confirmed that the sweet, salty, sour and bitter are indeed the 
four basic tastes and revealed that the sensation of taste is detected before the specific taste is 

identified.

What sort of questions are being investigated?
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A motivational example
Consider an investigation into the nature of intelligence. Data on six measures are collected:

ability to recite song 
lyrics from memory 

ability to hold two 
conversations at once

speed at completing 
crosswords

ability to assemble 
something from IKEA

ability to use a street 
directory

speed at completing 
jigsaw puzzles

What might be the !underlying factors"?
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Design Issues

• Selecting measures:
- We want to sample to get a representative coverage of the conceptual domain.

(e.g., a range of useful measures of what we mean by “intelligence”).

• Selecting participants:
- We want to sample to get a representative coverage of participants.

(e.g., a range of people that we would like to generalise to).

• Data collection method:
- Self Report? Behavioural measures? Question wording? Response scales?

(e.g., are these variables measuring what we expect them to measure?)
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Design Issues
What makes a variable interesting or important?

1. What the variable is measuring; its meaning; the concept or construct it is pointing to.

2. That cases, (people), vary on that measure. If there is no variance then there is no 
information about differences between cases. Variance is a measure of the amount 
of information that the variable conveys.

By analogy, a factor will be important: 

• If it is measuring something, and

• If it has a large variance.

Statistics and mathematics can do nothing about the first (1) because “data do not know 
where they come from”, but mathematics can work with variance and maximise the 
variance accounted for. 

Variance is a big concept in principal components analysis and factor analysis.
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Recall from Lecture 2...

Measures that !define" success...

Typing
Speed

V1

Emotional
Stability

V2

Chess
Experience

V3

...but how do we know whether we have a !good" measure?

One criterion for a !good" variable is that is serves to distinguish between cases.

Good Not so good
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Recall from Lecture 2...

2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience By computing the variance for each 

measure, the three measures may be 

correlated.

So the interpretations of the 

measures are not independent.

Another approach is to combine the 

three measures into a composite and 

compute the variance of the 

composite variable.

But how do we combine the scores?

a1 a2 a3

C1

C2

C3

1 1 -1

1 -1 1

1 1 1*Note that the variance of the linear composite 

can get large if we change the magnitude of 

the weights. So the weights are constrained so 

that their sums of squares are equal.
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Recall from Lecture 2...

2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience

1 3 11

6 -4 10

4 14 14

4 8 12

5 -1 11

3.5 51.5 2.3

C1 C2 C3

(1, 1,−1) (1,−1, 1) (1, 1, 1)

The goal here is to find the linear 

composite such that the scatter (spread) 

of the scores is a large as possible. That 

is, the linear composite has the largest 

possible variance. This gives the !most 

important factor". The optimum weights 

depend essentially on the pattern of 

correlations among the variables.
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Another motivational example
Consider an investigation into the nature of intelligence. Data on six measures are collected:

ability to recite song 
lyrics from memory 

ability to hold two 
conversations at once

speed at completing 
crosswords

ability to assemble 
something from IKEA

ability to use a street 
directory

speed at completing 
jigsaw puzzles

What might be the !underlying factors"?
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1.00

0.64 1.00

0.65 0.49 1.00

0.15 -0.04 -0.13 1.00

0.40 0.19 0.15 0.71 1.00

0.14 -0.01 -0.04 0.70 0.47 1.00

Correlations among six variables

Look for patterns of high 
correlations that might 
reveal that there are not 
six independent !things" 
being measured.

Note: Real data never look as clean as this!
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1.00

0.64 1.00

0.65 0.49 1.00

0.15 -0.04 -0.13 1.00

0.40 0.19 0.15 0.71 1.00

0.14 -0.01 -0.04 0.70 0.47 1.00

Patterns in the correlations
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Another motivational example
Consider an investigation into the nature of intelligence. Data on six measures are collected:

ability to recite song 
lyrics from memory 

ability to hold two 
conversations at once

speed at completing 
crosswords

ability to assemble 
something from IKEA

ability to use a street 
directory

speed at completing 
jigsaw puzzles

What might be the !underlying factors"?
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data representation"

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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Representing PCA
Logically: Euler Diagrams

• Consider six variables that 
are intercorrelated.
- Some more than others...

• The aim is to simplify our 
description of the information 
provided by the variables.

• A further aim may be to 
define the constructs which 
the variables describe.
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Representing PCA
Logically: Euler Diagrams

• Each variable is set to have a 
variance of 1 (standardised), 
so the total variance of the six 
variables is 6.

• This total variance is 
subjected to a PCA.

• A linear composite is 
created...
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Representing PCA
Logically: Euler Diagrams

• This first “principal 
component” is designed to 
account for as much as 
possible of the original 
variance

• It also represents the main 
“direction” that the variables 
are describing.

First principal 
component
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Representing PCA
Logically: Euler Diagrams

• A second linear composite is 
created.

• This second principal 
component is designed to 
account for as much of the 
remaining variance as 
possible.

• This second principal 
component is uncorrelated 
with the first component.

Second principal 
component
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Representing PCA
Logically: Euler Diagrams

• In total, six linear composites 
are created which, in 
combination, explain all of the 
original variance.

• The six correlated variables 
have been replaced with six 
uncorrelated linear 
composites.
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Representing PCA
Logically: Euler Diagrams

So what?

• Because of the way they are 
formed, earlier components 
contain more information than 
later components.

• In this example, the first two 
components explain 76% of 
the original variance.
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Representing PCA
Logically: Euler Diagrams

So what?

• So if we throw away the other 
four components, 24% of the 
original information is lost.

• But now we can discuss two 
variables instead of six.
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Representing PCA
Logically: Euler Diagrams

So what?

• So we"ve simplified the 
description of the original 
variables (at the expense of 
some information).

• We"ve also defined two 
constructs (macro-variables) 
that describe (most of) the 
information in the original 
data.
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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Representing PCA
Geometric:  A vector representation

• Normally when we plot a 
scatterplot the variables 
define the axes and there is a 
point for each case.  That is, 
we plot the cases in the 
space of the variables.

Cases

1 3 2

2 2 1

3 4 6

V1 V2

0 2 4 6

v1 

0

2

4

6

8

v
2

 

]

]

]

case1       

case2       

case3       

Page 2

Cases plotted in !variable space"

V2

V1
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Representing PCA
Geometric:  A vector representation

• We could also plot the 
variables in the space defined 
by cases. V1 and V2 are points 
in this space. The geometric 
definition of a vector is 
directional arrow of a given 
length coming from the origin 
of the space to the point.

Cases

1 3 2

2 2 1

3 4 6

V1 V2

Interactive Graph

W

W

Page 1

Variables plotted in !case space"

V2

V1
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Interactive Graph

W

W

Page 1

Representing PCA
Geometric:  A vector representation

Cases

1 3 2

2 2 1

3 4 6

• Even though the two vectors 
are plotted in three 
dimensional space only two 
dimensions are really needed 
to represent the two vectors.
- Even if there were 100 cases and two 

variables, the vectors would be plotted in 
two dimensions.

rv1v2 = .94

cos(θ) = 20◦

θ
The angle between the two vectors !measures" the 
correlation between the two variables. If two 
variables are perfectly correlated then they are 
coincident and the angle is 0. If the correlation is 0, 
the angle is 90° and the two vectors are orthogonal.

180 arccos(.94)
π

= 20◦

V1 V2

V2

V1
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0

50 0

49 60 0

81 92 98 0

66 79 82 45 0

82 90 92 45 62 0

cos(θ)

θ
49˚

1.00

0.64 1.00

0.65 0.49 1.00

0.15 -0.04 -0.13 1.00

0.40 0.19 0.15 0.71 1.00

0.14 -0.01 -0.04 0.70 0.47 1.00

r

There does appear to be two 
!clusters" of variables. There 
seems to be two underlying factors 
in the variables. How can we find 
these factors? In this simple case 
we would be tempted to just draw 
them through the centres of the 
!clusters" of variables. In real data, 
the patterns are not that clear and 
we need a technique to find the 
patterns. One such technique is 
principal components analysis.
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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Representing PCA
Schematic: A !boxes of data" representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)
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Representing PCA
Schematic: A !boxes of data" representation

1

Total variance = 6

From raw data to correlation matrix
(variance-covariance matrix)

1
1

1
1

1
16

1 6

r

r
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2.55

Representing PCA
Schematic: A !boxes of data" representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)

Linear 
Transform

Linear 
Combination

Variance =

P1

Find a linear combination of the six 
variables that has the maximum variance.
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Recall from Lecture 2...

2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience

1 3 11

6 -4 10

4 14 14

4 8 12

5 -1 11

3.5 51.5 2.3

C1 C2 C3

(1, 1,−1) (1,−1, 1) (1, 1, 1)

The goal here is to find the linear 

composite such that the scatter (spread) 

of the scores is a large as possible. That 

is, the linear composite has the largest 

possible variance. This gives the !most 

important factor". The optimum weights 

depend essentially on the pattern of 

correlations among the variables.
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Representing PCA
Schematic: A !boxes of data" representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)

Linear 
Transform

Linear 
Combination

Variance =

P1 P2

Find a second linear combination, 
uncorrelated (at right angles) with the first, 

that has a maximum of the residual variance.

2.55 2.02
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Representing PCA
Schematic: A !boxes of data" representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)

Linear 
Transform

Linear 
Combination

Variance =

Find a second linear combination, 
uncorrelated (at right angles) with the first, 

that has a maximum of the residual variance.

r = 0

P1 P2

2.55 2.02
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Representing PCA
Schematic: A !boxes of data" representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)

Linear 
Transform

Linear 
Combination

Variance =

P1 P2

r = 0

P3 P4 P5 P6

Find a second linear combination, 
uncorrelated (at right angles) with the first, 

that has a maximum of the residual variance.

2.55 2.02 .51 .49 .25 .18
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2.55
2.02

.49
.25

.18

Representing PCA
Schematic: A !boxes of data" representation

1

Total variance = 6

Variance-covariance matrix of the six new
uncorrelated variables

6

1 6

zero

zero
.51
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Representing PCA
Schematic: A !boxes of data" representation

• A full PCA transforms a set of correlated measured 
variables into a set of uncorrelated variables (linear 
combinations).

• These are new composite scores or synthetic variables.

• We can use this if we know:
- How many dimensions are needed to adequately represent the information in 

the original variables.

- How to interpret the linear combination.

Summary
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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P1 = v11Zi1 + v21Zi2 + · · · + v61Zi6

P1 =
∑

vj1Zij

P1 = Zv1

Representing PCA
Algebraic: A formulaic representation

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1Variance of 

each variable

Original Correlated Variables (standardised)

Linear 

Transform

Linear 

Combination

Variance = 2.55

P1 We need to fill 
this out a bit.

Recall from Lecture 2...

2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience

1 3 11

6 -4 10

4 14 14

4 8 12

5 -1 11

3.5 51.5 2.3

C1 C2 C3

(1, 1,−1) (1,−1, 1) (1, 1, 1)

The goal here is to find the linear 

composite such that the scatter (spread) 

of the scores is a large as possible. That 

is, the linear composite has the largest 

possible variance. This gives the !most 

important factor". The optimum weights 

depend essentially on the pattern of 

correlations among the variables.

v1 var(P1)Find so that is a maximum

var(P1) = v′
1Rv1

v′
1v1 = 1constraint: the weights are normalised so the 

variance can"t be made arbitrarily large.

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1

Z v11

v16

v

1

N

P1

=

2.55
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100× (2.55 + 2.02)
6

= 76.2%

100× 2.02
6

= 33.7%

var(P2) = 2.02

100× 2.55
6

= 42.5%

var(P1) = 2.55

Representing PCA
Algebraic: A formulaic representation

v1 var(P1)Goal: Find so that is a maximum

This leads to an eigen equation (see later). In this case, 
the weights that maximise the variance of     are:P1

This is the first eigenvector. The first eigenvalue is the
and since the total variance in the six variables is 6, the percentage 
of variance that the first linear combination accounts for is:

,

This is the second eigenvector. The 2nd eigenvalue is
and since the total variance in the six variables is 6, the percentage 
of variance that the second linear combination accounts for is:

,

The variance accounted for by both principal components is:

v1 =





.48

.35

.32

.41

.50

.37





v2 =





−.35
−.43
−.48
.48
.24
.42




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• The first principal component finds 
the direction in which all the variables 
seem to be pointing.

- The sums of squares of the projections of 
the endpoints of the vectors onto the 
principal direction is the amount of variance 
of the variables accounted for by that 
direction.

• The second component is at right 
angles (uncorrelated) with the first.

• From geometry we see that the linear 
composites are the new orthogonal 
directions in the space of the 
variables.

P1

P2

...a brief aside...
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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2.55

2.55

Representing PCA
Matrix: The Fundamental Equations

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1

Z
v61

× v1

v11

λ1

v16

v′
1

v11 v61

× v1

v11

r61

× R
r11

r66

= λ1v′
1Rv1 = λ1

Zv1 = P1

Rv1 = λ1v1
r61

R
r11

r66 v61

× v1

v11

v61

× v1

v11

= λ1

This is an !eigen-equation" where      is the first eigenvalue and     is the first 
eigenvector.  The weights,    , specify the linear combination of the original 
variables that make the variance of the linear combination as large as possible.  
The variance of the linear composite is    .

λ1 v1

v1

λ1

= P1

N

1
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2.02

2.02

P2

v′
2

v21 v26

v62

v12

v62

v12

v62

v12

v62

v2 v2

v2

v2

λ2

λ2

Rv2 = λ2v2

v′
2Rv2 = λ2

Zv2 = P2

Representing PCA
Matrix: The Fundamental Equations

r61

r61

Z1 Z2 Z3 Z4 Z5 Z6
1

N
1 1 1 1 1 1

Z × =

N

× ×R
r11

r66

=

R
r11

r66

×
v11

= ×λ1

1

λ2This is an !eigen-equation" where      is the second eigenvalue and     is the 
second eigenvector.  It"s formed to be uncorrelated with the first and to have 
the maximum remaining variance.

v2
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Representing PCA
Matrix: The Fundamental Equations

There"s an !eigen-equation" for each principal component. Putting all the eigen-
equations together gives us:

r61

R
r11

r66 v66v61

v11

V× =
v66v61

v11

V

λ1

λ2

λ3

λ4

λ5

λ60

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0 0 0 0

0 0 0

l11

l61 l66
L×

L = V′RV

RV = VL
The matrices    and    are special. Each of the columns in 
is orthogonal to all the others and                              , and 
therefore                 .    is a diagonal matrix with the 
eigenvalues down the diagonal.

Given these formulas and due to the special form of    , 
the correlation matrix     can be expressed as:

This is known as the singlular value descomposition (SVD) 
of the correlation matrix    .

V L V
V′V = I = V−1V

V−1 = V′ L

V
R

R = VLV′

R
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Representing PCA
Matrix: The Fundamental Equations

can be rewritten asR = VLV′ R = V
√

L
√

LV′

Now if we let A = V
√

L and thus A′ =
√

LV′
then:

R = AA′

What this means is that all the information in     is reexpressed in    , (the 
loading matrix) which gives the relationships (correlations) between the 
variables and components). So    contains all the information that"s in    .

R A

A R

This is the fundamental 
equation of Principal 
Components Analysis.
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Representing PCA
Matrix: The Fundamental Equations

R = AA′

1.00 0.64 0.65 0.15 0.40 0.14

0.64 1.00 0.49 -0.04 0.19 -0.01

0.65 0.49 1.00 -0.13 0.15 -0.04

0.15 -0.04 -0.13 1.00 0.71 0.70

0.40 0.19 0.15 0.71 1.00 0.47

0.14 -0.01 -0.04 0.70 0.47 1.00

R
0.76 0.50 0.02 -0.05 -0.40 -0.01

0.56 0.61 -0.42 0.33 0.17 0.02

0.50 0.68 0.47 -0.12 0.22 0.07

0.65 -0.68 -0.06 -0.05 0.01 0.33

0.79 -0.34 -0.18 -0.40 0.12 -0.21

0.59 -0.59 0.28 0.45 0.00 -0.15

=

A
0.76 0.56 0.50 0.65 0.79 0.59

0.50 0.61 0.68 -0.68 -0.34 -0.59

0.02 -0.42 0.47 -0.06 -0.18 0.28

-0.05 0.33 -0.12 -0.05 -0.40 0.45

-0.40 0.17 0.22 0.01 0.12 0.00

-0.01 0.02 0.07 0.33 -0.21 -0.15

×

A′

The elements of    also turn out to be the correlations of each variable with each principal 
component. These correlations are called !loadings" and indicate the relationship between 
each variable and each component.     is thus called the loading, pattern, or structure matrix.

A

A
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Principal components 

analysis
• Purposes

• Motivational examples

• Design Issues

• Representing PCA

- Logically: Euler Diagrams

- Geometric:  A vector representation

- Schematic: A !boxes of data" representation

- Algebraic: A formulaic representation

- Matrix: The Fundamental Equations

- Schematic: The matrices linked
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One matrix"s journey 
of transformation: 

From real to synthetic
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Representing PCA
Schematic: The matrices linked

T&F Example (page 615)
“Five subjects who were trying on ski boots late on a 
Friday night in January were asked about the 
importance of each of four variables to their selection of 
a ski resort. The variables were cost of ski ticket 
(COST), speed of ski lift (LIFT), depth of snow (DEPTH), 
and moisture of snow (POWDER). Larger numbers 
indicate greater importance. The researcher wanted to 
investigate the pattern of relationships among the 
variables in an effort to understand better the 
dimensions underlying choice of ski area.”

Variables

Skiers COST LIFT DEPTH POWDER

32 64 65 67

61 37 62 65

59 40 45 43

36 62 34 35

62 46 43 40

S1

S2

S3

S4

S5
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Z =





−1.223 1.136 1.150 1.141
0.748 −1.024 0.923 1.007
0.612 −0.784 −0.363 −0.470

−0.952 0.976 −1.195 −1.007
0.816 −0.304 −0.515 −0.671





1

N

1 p

Z

get Z,

X

1

N

1 p

X =





32 64 65 67
61 37 62 65
59 40 45 43
36 62 34 35
62 46 43 40





Take X,

R =





1.000 −0.953 −0.055 −0.130
−0.953 1.000 −0.091 −0.036
−0.055 −0.091 1.000 0.990
−0.130 −0.036 0.990 1.000





1

p

1 p

R

get R.

standardise

standardise,

R =
Z′Z

N− 1

calculate
Z′Z

N− 1
,
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R =





1.000 −0.953 −0.055 −0.130
−0.953 1.000 −0.091 −0.036
−0.055 −0.091 1.000 0.990
−0.130 −0.036 0.990 1.000





1

p

1 p

R

Take R,
decompose R

(do a SVD)
get L and V.

1

p

1 p

R = VLV′

1

p

1 p

L

V

λ1

λp

V =





0.352 −0.614 0.663 −0.244
−0.251 0.664 0.676 −0.199
−0.627 −0.322 0.276 0.653
−0.647 −0.280 −0.169 −0.689





L =





2.016 0 0 0
0 1.942 0 0
0 0 0.038 0
0 0 0 0.004





96



normalise columns,Take L and V,

1

p

1 p

1

p

1 p

λ1

λp

V =





0.352 −0.614 0.663 −0.244
−0.251 0.664 0.676 −0.199
−0.627 −0.322 0.276 0.653
−0.647 −0.280 −0.169 −0.689





L =





2.016 0 0 0
0 1.942 0 0
0 0 0.038 0
0 0 0 0.004





L

V

get A.

1

p

1 p

A
V
√

L = A

A =





0.500 −0.856 0.129 −0.016
−0.357 0.925 0.131 −0.013
−0.891 −0.449 0.054 0.043
−0.919 −0.390 −0.033 −0.046




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calculate        ,A′A recover R.

1

p

1 p

R

R =





1.000 −0.953 −0.055 −0.130
−0.953 1.000 −0.091 −0.036
−0.055 −0.091 1.000 0.990
−0.130 −0.036 0.990 1.000





Take A,

A =





0.500 −0.856 0.129 −0.016
−0.357 0.925 0.131 −0.013
−0.891 −0.449 0.054 0.043
−0.919 −0.390 −0.033 −0.046





A′ =





0.500 −0.357 −0.891 −0.919
−0.856 0.925 −0.449 −0.390

0.129 0.131 0.054 −0.033
−0.016 −0.013 0.043 −0.046





1

p

1 p

A

1

p

1 p

A′
AA′ = R

98



ZV = P

calculate               ,

ZA√
L

= P

ZA√
L

= PTake Z, A, and L,

A =





0.500 −0.856 0.129 −0.016
−0.357 0.925 0.131 −0.013
−0.891 −0.449 0.054 0.043
−0.919 −0.390 −0.033 −0.046





1

p

1 p

A

1

p

1 p

L

1

N

1 p

Z

Z =





−1.223 1.136 1.150 1.141
0.748 −1.024 0.923 1.007
0.612 −0.784 −0.363 −0.470

−0.952 0.976 −1.195 −1.007
0.816 −0.304 −0.515 −0.671





L =





2.016 0 0 0
0 1.942 0 0
0 0 0.038 0
0 0 0 0.004





get P.

1

N

1 p

P

P =





−2.177 0.816 0.082 0.038
−0.710 −1.718 −0.112 −0.069

0.945 −0.648 −0.146 0.093
0.821 1.899 −0.130 −0.049
1.121 −0.349 0.306 −0.012





2.016 1.942 0.038 0.004var =
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Representing PCA
Schematic: The matrices linked

• A full PCA transforms a set of correlated measured 
variables into a set of uncorrelated variables (linear 
combinations).

• These are new composite scores or synthetic variables.

• We can use this if we know:
- How many dimensions are needed to adequately represent the information in 

the original variables.

- How to interpret the linear combination.

Summary (again)
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