psyc3010 lecture 11

mixed anova

last week: within-subject anova next week: a bit on logistic regression, plus overview of course, T-vals, and ***practice exam***

last week \rightarrow this week

- last week we returned to anova to consider withinsubjects designs
- this week we reunite within-subjects and betweensubjects anova – mixed factorial anova: within and between subjects factors
- actually not too difficult because we have kind of done it already
 - every time we do within subjects anova we deal with a betweensubjects factor, the random effect of subjects
- But first, brief Q&A about Assignment 2 ?

mixed anova

also called split-plot anova

- Apparently because the first mixed designs emerged in agricultural research where 'plots' of land were assigned -> BS treatments as well as divided -> WS factors
- NB confusion alert:
 - Mixed anova has a BS factor and a WS factor.
 - Mixed model within-subjects ANOVA is the normal way of doing WS ANOVA (where you evaluate sphericity and report an adjusted F, such as GG) – in contrast to MANOVA
- within-subjects anova is great for power, but some variables can be tricky or unethical to manipulate within-subjects
 - e.g., gender, brain injury
- can also manipulate a variable BS to exclude the potential carry-over effects
 - because observations in BS design are independent

assumptions

DV is normally distributed

between subjects terms:

homogeneity of variance within levels of between-subjects factor
 the ordinary garden-variety homogeneity of variance assumption

within-subjects terms:

- homogeneity of variance: AxS interactions constant at all levels of B
- variance-covariance matrix same at all levels of A
- pooled (or average) variance-covariance matrix exhibits compound symmetry (c.f. sphericity)
- usual epsilon adjustments apply when within-subjects assumptions are violated

an example

- start with an easy one just add a betweensubjects factor to last week's example
 - we had four blocks of trials in a learning study each block was a level of the within subjects factor
 - lets say we think a particular bit of the brain is responsible for this particular kind of learning...
 - compare learning of normals (control group) with
 - subjects given brain lesion
 - subjects given drug

(typically this research would use *rats*)

time taken (seconds) to complete the maze is the **DV**

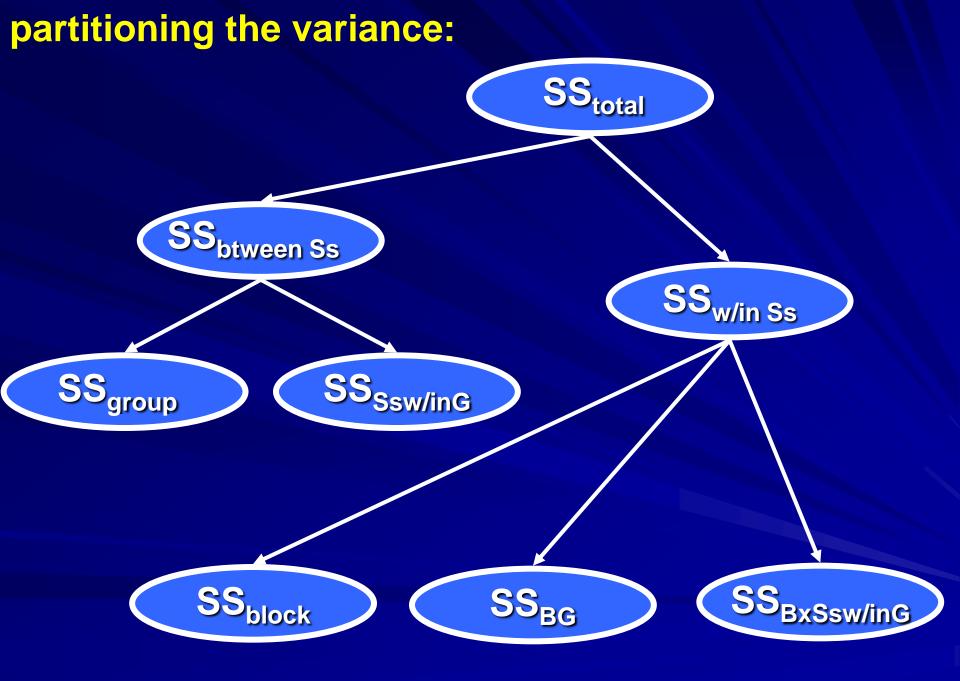
group and block are the IVs

			BLC	DCK			
GROUP		1	2	3	4	Totals	
Normal	subject 1	45	42	35	26	148	
	subject 2	35	33	28	15	111	
	subject 3	61	57	48	26	192	
	subject 4	39	36	30	8	113	
Total (normal)		180	168	141	75	564	
Drug	subject 5	32	30	25	20	107	
	subject 6	48	45	38	37	168	
	subject 7	52	48	40	38	178	
	subject 8	67	63	53	49	232	
Total (drug)		199	186	156	144	685	
Lesion	subject 9	77	72	60	55	264	
	subject 10	70	66	55	56	247	
	subject 11	70	66	55	60	251	
	subject 12	58	54	45	44	201	
Total (lesion)		275	258	215	215	963	
block total		654	612	512	434	2212	Grand Total
block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean

			BLC	OCK			
GROUP		1	2	3	4	Totals	
							
Normal	subject 1	45	42	35	26	148	
	subject 2	35	33	28	15	111	
	subject 3	61	57	48	26	192	
	subject 4	39	36	30	8	113	
Total (normal)		180	168	141	75	564	
Drug	subject 5	32	30	25	20	107	
	subject 6	48	45	38	37	168	
	subject 7	52	48	40	38	178	
	subject 8	67	63	53	49	232	
Total (drug)		199	186	156	144	685	
Lesion	subject 9	77	72	60	55	264	
	subject 10	70	66	55	56	247	
	subject 11	70	66	55	60	251	
	subject 12	58	54	45	44	201	
Total (lesion)		275	258	215	215	963	
block total		654	612	512	434	2212	Grand Total
block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean

			BLC	ОСК			
GROUP		1	2	3	4	Totals	
Normal	subject 1	45	42	35	26	148	
	subject 2	35	33	28	15	111	
	subject 3	61	57	48	26	192	
	subject 4	39	36	30	8	113	
Total (normal)		180	168	141	75	564	
Drug	subject 5	32	30	25	20	107	
	subject 6	48	45	38	37	168	
	subject 7	52	48	40	38	178	
	subject 8	67	63	53	49	232	
Total (drug)		199	186	156	144	685	
Lesion	subject 9	77	72	60	55	264	
	subject 10	70	66	55	56	247	
	subject 11	70	66	55	60	251	
	subject 12	58	54	45	44	201	
Total (lesion)		275	258	215	215	963	
	1						
block total		654	612	512	434	2212	Grand Total
block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean

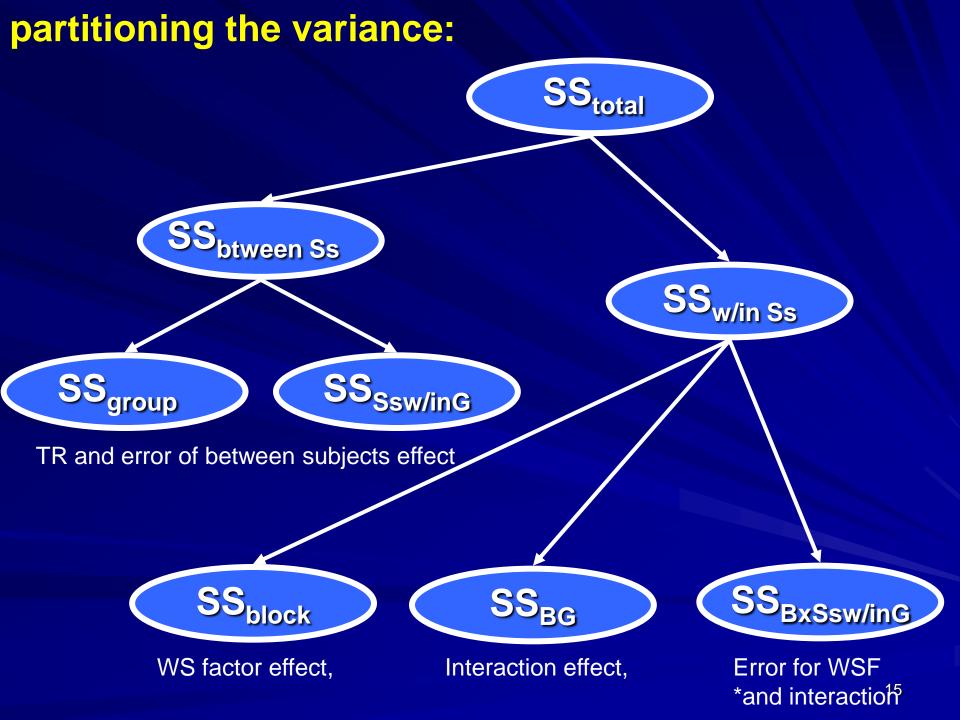
block is a fixed withinsubjects factor


group is a fixed betweensubjects factor

				BLC	OCK			
			1	2	3	4	Totals	
	because one of the							
	IVs is a within-	subject 1	45	42	35	26	148	
		subject 2	35	33	28	15	111	
	subjects factor, we	subject 3	61	57	48	26	192	
	include the random	subject 4	39	36	30	8	113	
			180	168	141	75	564	
	factor SUBJECTS in							
	the partitioning of the	subject 5	32	30	25	20	107	
		subject 6	48	45	38	37	168	
	variance	subject 7	52	48	40	38	178	
	$\pm (1/1)$	subject 8	67	63	53	49	232	
	Total (drug)		199	186	156	144	685	
	Logion	aubiaat 0	77	72	60	55	264	
	has a shift of a factor to be a to	^ubject 9	77 70	66	60 55	55 56	264 247	
J	he subjects factor is saic	ubject 10 ubject 11	70	66	55	50 60	247 251	
	to be NESTED under	ubject 12	70 58	54	35 45	44	201	
			275	258	215	215	<u>963</u>	
	levels of the between-		215	200	215	210	505	
	subjects factor GROUP	•	654	612	512	434	2212	Grand Total
			001	012	012	101		
	(Each subject is tested in		54.50	51.00	42.67	36.17	46.08	Grand Mean
	· · · · · · · · · · · · · · · · · · ·							
	only 1 group)							
								10

the subjects factor is also said to be **CROSSED** wi the withinsubjects facto **BLOCK** each subject participates ir each block

			BLC	ЮСК			
		1	2	3	4	Totals	
jects							
-	subject 1	45	42	35	26	148	
s also	subject 2	35	33	28	15	111	
h h h	subject 3	61	57	48	26	192	
be	subject 4	39	36	30	8	113	
D with		180	168	141	75	564	
hin-	subject 5	32	30	25	20	107	
	subject 6	48	45	38	37	168	
factor	subject 7	52	48	40	38	178	
_	subject 8	67	63	53	49	232	
CK		199	186	156	144	685	
ubiect	subject 9	77	72	60	55	264	
ibject	subject 10	70	66	55	56	247	
ates in	subject 11	70	66	55	60	251	
	subject 12	58	54	45	44	201	
lock		275	258	215	215	963	
рюск тотаі		654	612	512	434	2212	Grand Total
block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean


In a two by three mixed ANOVA in which gender (male; female) serves as a between-subjects variable and time of test (start of semester, mid-semester, end of semester) serves as a repeated measures variable, subject is crossed with _____ and nested within _____.

effects and error terms

 this design is to be treated as a 2-way mixed factorial, so three omnibus effects are to be tested

- main effect of group
- main effect of block
- group x block interaction
- one error term is required for the between-subjects factor (subjects within groups)
- one error term is required for the within-subjects factor and the two-way interaction (interaction between block and subjects within groups)
- Point: whereas last week error was TR x S (for fully within factors), for a within factor crossed with a between factor the error for the between ME is Swithingroups and the error for the within ME and the interaction within factor x between factor is WFxS_{withingroups}

Understanding the Mixed design

Variability				BLC	OCK			
within the	GROUP		1	2	3	4	Totals	
groups is error	Normal	subject 1	45	42	35	26	148	
for the BS	Normai	subject 2	35	33	28	15	111	
		subject 3	61	57	48	26	192	
effect		subject 4	39	36	30	8	113	
	Total (normal)		180	168	141	75	564	
F = ratio of	Drug	subject 5	32	30	25	20	107	
variability	Didg	subject 6	48	45	38	37	168	
		subject 7	52	48	40	38	178	
among group		subject 8	67	63	53	49	232	
means divided	Total (drug)		199	186	156	144	685	
by variability				70	00		004	
within groups	Lesion	subject 9	77	72	60 55	55 56	264 247	
within groups		subject 10 subject 11	70 70	66 66	55 55	56 60	247 251	
		subject 12	58	54	45	44	201	
	Total (lesion)		275	258	215	215	963	
	block total		654	612	512	434	2212	Grand Total
	block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean

Understanding the Mixed design

Inconsistencies in the Block effect across subjects (SxBlk interaction) are the error for the WS effect

F = ratio of variability among means for WS levels divided by variability in WS effect

			BLO	OCK			
GROUP		1	2	3	4	Totals	
Normal	subject 1	45	42	35	26	148	
	subject 2	35	33	28	15	111	
	subject 3	61	57	48	26	192	
	subject 4	39	36	30	8	113	
Total (normal))	180	168	141	75	564	
Drug	subject 5	32	30	25	20	107	
	subject 6	48	45	38	37	168	
	subject 7	52	48	40	38	178	
	subject 8	67	63	53	49	232	
Total (drug)		199	186	156	144	685	
Lesion	subject 9	77	72	60	55	264	
	subject 10	70	66	55	56	247	
	subject 11	70	66	55	60	251	
	subject 12	58	54	45	44	201	
Total (lesion)		275	258	215	215	963	
block total		654	612	512	434	2212	Grand Total
block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean

Understanding the Mixed design

in the Block effect across subjects (SxBlk interaction) are the error for the WS x BS interaction (Grp x Block) F = ratio ofvariability among cell means for WS levels within each group (adjusted for MEs) divided by variability in WS effect

Inconsistencies

				BLC	DCK			
	GROUP		1	2	3	4	Totals	
	Normal	subject 1	45	42	35	26	148	
		subject 2	35	33	28	15	111	
		subject 3	61	57	48	26	192	
		subject 4	39	36	30	8	113	
	Total (normal)		180	168	141	75	564	
	Drug	subject 5	32	30	25	20	107	
		subject 6	48	45	38	37	168	
		subject 7	52	48	40	38	178	
		subject 8	67	63	53	49	232	
	Total (drug)		199	186	156	144	685	
	Lesion	subject 9	77	72	60	55	264	
		subject 10	70	66	55	56	247	
		subject 11	70	66	55	60	251	
		subject 12	58	54	45	44	201	
	Total (lesion)		275	258	215	215	963	
	block total		654	612	512	434	2212	Grand Total
	block mean		54.50	51.00	42.67	36.17	46.08	Grand Mean
y C								

calculations

$$\Sigma X^{2} = 113832 \quad \frac{(\Sigma X)^{2}}{N} = 2212^{2} / 48 = 101936.33$$

$$SS_{total} = \Sigma X^{2} - \frac{(\Sigma X)^{2}}{N} = 113832 - 101936.33 = 11895.67$$

BETWEEN SUBJECTS EFFECTS:

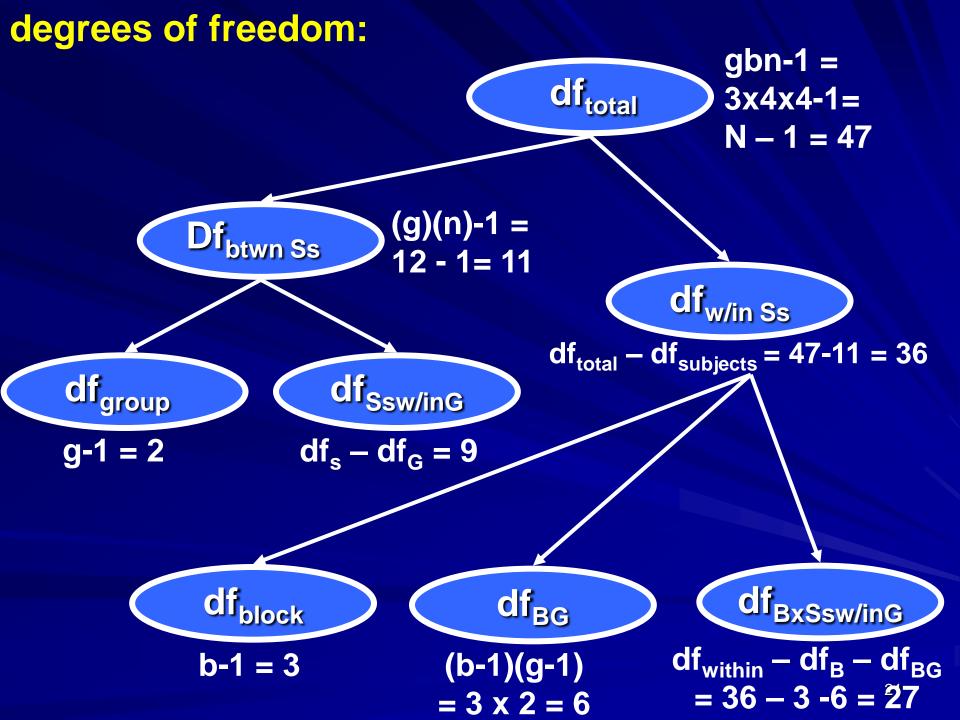
$$SS_{S} = \frac{\sum T_{s}^{2}}{b} - \frac{(\Sigma X)^{2}}{N} = 148^{2} + \dots + 201^{2} / 4 - 101936.33 = 8850.17$$

$$SS_{G} = \frac{\sum T_{G}^{2}}{nb} - \frac{(\Sigma X)^{2}}{N} = 564^{2} + 685^{2} + 963^{2} / 16 - 101936.33 = 5231.79$$

 $SS_{SSW/inG} = SS_S - SS_G = 8850.17 - 5231.79 = 3618.38$

calculations

WITHIN SUBJECTS EFFECTS:


 $SS_{W/inSs} = SStotal - SS_{S} = 11895.67 - 8850.17 = 3045.5$

$$SS_{B} = \frac{\sum T_{B}^{2}}{ng} - \frac{(\Sigma X)^{2}}{N} = 654^{2} + \dots + 434^{2} / 12 - 101936.33 = 2460.33$$

$$SS_{cells} = \frac{\sum T_{BG}^{2}}{n} - \frac{(\Sigma X)^{2}}{N} = 180^{2} + \dots + 215^{2} / 4 - 101936.33 = 8073.17$$

$$SS_{BG} = SS_{cells} - SS_{B} - SS_{G} = 8073.17 - 2460.33 - 5231.79 = 381.05$$

 $SS_{BxS w/inG} = SS_{w/inSs} - SS_{BG} - SS_B = 3045.5 - 381.05 - 2460.33 = 204.12$

In a two by three mixed ANOVA in which gender (male; female) serves as a between-subjects variable and time of test (start of semester, midsemester, end of semester) serves as a repeated measures variable, with 20 men and 20 women tested three times each, the degrees of freedom will be:

summary table

Source	SS	df	MS	F
Between Subjects:	8850.17	11		
Group	5231.79	2	2615.90	6.51 *
Ss w/in Group	3618.38	9	402.04	
Within Subjects	3045.50	36		
Block	2460.33	3	820.11	108.48 *
Block x Group	381.05	6	63.51	8.40 *
Block xSs w in Group	204.12	27	7.56	
Total	11895.67	47.00		
Fcrit(2,9) = 4.26				
Fcrit(3,27) = 2.95				
Fcrit(6,27)= 2.45				

SPSS output

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source		Type III Sum	df	Moon Square	F	Sig
Source		of Squares	df	Mean Square	-	Sig.
BLOCK	Sphericity Assumed	2460.333	3	820.111	108.478	.000
	Greenhouse-Geisser	2460.333	1.225	2008.476	108.478	.000
	Huy nh-Feldt	2460.333	1.633	1506.268	108.478	.000
	Lower-bound	2460.333	1.000	2460.333	108.478	.000
BLOCK * GROUP	Sphericity Assumed	381.042	6	63.507	8.400	.000
	Greenhouse-Geisser	381.042	2.450	155.530	8.400	.005
	Huy nh-Feldt	381.042	3.267	116.641	8.400	.001
	Lower-bound	381.042	2.000	190.521	8.400	.009
Error(BLOCK)	Sphericity Assumed	204.125	27	7.560		
	Greenhouse-Geisser	204.125	11.025	18.515		
	Huy nh-Feldt	204.125	14.701	13.886		
	Lower-bound	204.125	9.000	22.681		

this error term is Block x Ss w/in Group

SPSS output

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	101936.333	1	101936.333	253.547	.000
GROUP	5231.792	2	2615.896	6.507	.018
Error	3618.375	9	402.042		

this error term is Ss w/in Group

following up main effects

between-subjects factor

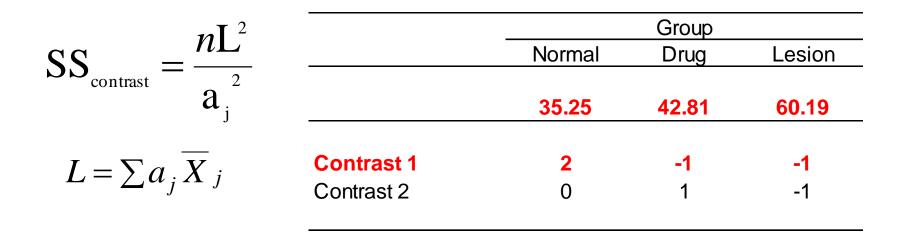
- rule is the same as it would be if this were just a 1way between-subjects anova:
- use error term from test of between-subjects main effect
- MS_{Ss w/in G} in this case

within-subjects factor

- use a separate error term (as per last week)
- **MS_{Bcomp}xS** w/in G

significant main effect of group

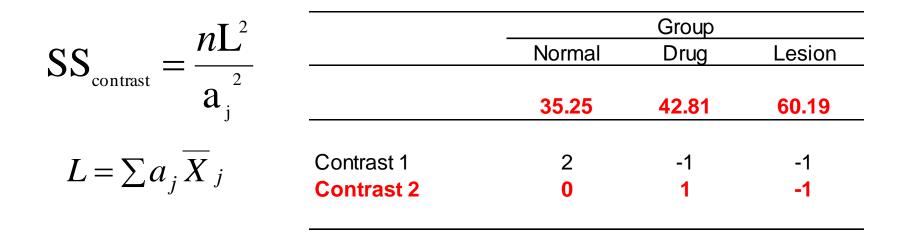
- so if the bit of the brain affected by the lesions and drugs is indeed responsible for the learning in our study, we would expect...
 - the lesion and drug group to have worse (slower) performance than the normal (control) group
 - the lesion group to perform about the same as the drug group (i.e., same process is being interrupted)
 - could test this with a set of orthogonal linear contrast just like the ones we saw earlier in the semester...


significant main effect of group

mean for $G_1 = 35.25$

mean for $G_2 = 42.81$

mean for $G_3 = 60.19$


calculations for contrast 1

L = 2(35.25) - 1(42.81) - 1(60.19) = -32.5

$$SS_{contrast} = \frac{(16)(-32.5)^2}{6} = 2816.67$$

calculations for contrast 2

L = 0(35.25) + 1(42.81) - 1(60.19) = -17.38

$$SS_{contrast} = \frac{(16)(-17.38)^2}{2} = 2416.52$$

summary table

Source	SS	df	MS	F
G1 vs G2 & G3	2816.67	1	2816.67	7.01
G2 vs G3	2416.52	1	2416.52	6.01
Ss w/in Group	3618.38	9	402.04	

therefore, averaging over the 4 experimental blocks, the normal (control) group performed better than the drug group and lesion group, and the drug group in turn performed better than the lesion group

significant main effect of block

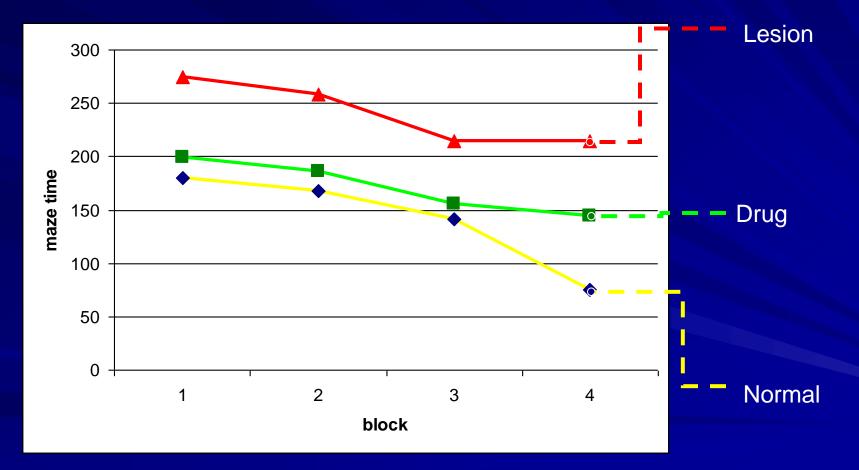
- the comparisons between the different groups doesn't really tell us if any <u>learning</u> occurred – we need to see that subjects are completing the maze faster by the end of the study
 - could test this with a set of linear contrast just like the ones we saw last week...
 - as block is a within-subjects factor we have to get the error term for each comparison based upon only the data involved in that comparison
 - for the sake of brevity let's just compare the first block with the last

significant main effect of block

as per last week, v get SS_{Bcomp} and th error term by running a 1-way within-subjects anova on our two comparison block

SS_{block} is the SS_{contrast} (SS_{Bcomp} SS_{blockxS} is the error term (SS_{BcompXS})

BLOCK								
week, we		1	2	3	4	Totals		
and the		. –				- /		
,	subject 1	45			26	71		
m by	subject 2	35			15	50		
-	subject 3	61			26	87		
1-way	subject 4	39			8	47		
bjects		180			75	255		
our two	subject 5	32			20	52		
n blocks	subject 6	48			37	85		
	subject 7	52			38	90		
s the	subject 8	67			49	116		
		199			144	343		
SS _{Bcomp})								
Deomp	subject 9	77			55	132		
the error	subject 10	70			56	126		
· · · · · · · · · · · · · · · · · · ·	subject 11	70			60	130		
compXS)	subject 12	58			44	102		
		275			215	490		
block total		654			434	1088	Grand Total	
DIUCK IUIAI		004			404	1000	Granu Total	
block mean		54.50			36.17	45.33	Grand Mean	


summary table

SS	df	MS	F
2016.67	1	2016.67	65.76 [*]
337.33	11	30.67	
	2016.67	2016.67 1	2016.67 1 2016.67

therefore, averaging over the 3 experimental groups, subjects were performing significantly better by the end of the experiment – hence learning has occurred

interaction of group x block

simple effects within-subjects factors...

- if we wanted to conduct the simple effects of block (for each group), we just run a 1-way within subjects anova on block separately for each group
 - as such, the error term used will be appropriate for each effect
 - using the pooled error term (in this case, MS_{BxSsw/inG}) is not appropriate, and may over or underestimate error component (denominator of F-ratio), even when degrees of freedom are adjusted

summary table

	Source	SS	df	MS	F	_
ote that the	Normal					
	Block	1651.50	3	550.50	38.71	*
average of these	Error	128.00	9	14.22		
error terms =						
14.22 + 2.78 +	Drug					
(5.67) / 3 = 7.56:	Block	490.69	3	163.56	58.74	*
he value of our r	Error	25.06	9	2.78		
∕IS _{B xSs w∣in G}	Lesion					
	Block	699.19	3	233.06	41.08	*
	Error	51.06	9	5.67		

n

а

е

ر 5

tł

simple effects between-subjects factors...

could also examine simple effects of group for each of the four blocks – here we have two possible approaches:

- use a separate error term for each simple effect
- i.e., run four 1-way between-subjects anovas to compare groups at each of the four blocks
- then use MS_{Ss w/in G at B1}, MS_{Ss w/in G at B2} etc

OR

- a special pooled error term may be used: MS_{Ss w/in cell}
- this error term is an estimate of the average error variance within the 12 cells
 - SS_{w/in cell} = SS_{Sw/inG} + SS_{BxSs w/in G}
 - $MS_{SS w/in cell} = SS_{w/in cell} / (df_{SS w/in G} + df_{BxSS w/in G})$

(is OK to pool because between subjects effects should be independent)

simple effects between-subjects factors...

- in both cases, the sums of squares for the simple effects are derived just as we have seen in the case of between subjects anova (see lecture 3)
- the separate error term method is a little quicker, but you compromise on degrees of freedom

summary table separate error term

Source	SS	df	MS	F	_	NB
Group at Block1	1263.50	2	631.75	4.74	*	df are just
Ss w/in G at B1	1199.50	9	133.28			from the
Group at Block2	1134.00	2	567.00	4.81	*	block main
Ss w/in G at B2	1062.00	9	118.00			effect
Group at Block3	765.17	2	382.58	4.56	*	
Ss w/in G at B3	755.50	9	83.94			
Group at Block4	2450.17	2	1225.08	13.69	*	
Ss w/in G at B4	805.50	9	89.50			

(aside: might be informative to calculate estimates of effect size – the bigger effect is clearly occurring at block 4)

summary table pooled error term (*MS*_{SS W/in cell})

Source	SS	df	MS	F	_	NB
Group at Block1	1263.50	2	631.75	5.95	*	
Ss w/in G at B1	3822.50	36	106.18			SS _{Ss w in cell} = 204.12 +
Group at Block2	1134.00	2	567.00	5.34	*	3618.38
Ss w/in G at B2	3822.50	36	106.18			(SSw/inGr
Group at Block3	765.17	2	382.58	3.60	*	+
Ss w/in G at B3	3822.50	36	106.18			SSgrpxblk
Group at Block4	2450.17	2	1225.08	11.54	*	S)
Ss w/in G at B4	3822.50	36	106.18			

Fcrit (2,36) = 2.94

summary table pooled error term (*MS*_{Ss w/in cell})

1263.50 3822.50 1134.00 3822.50	2 36 2	631.75 106.18 567.00	5.95 5.34	*	df = 9 + 27
1134.00	2		5.34	*	dI = 9 + 2I
		567.00	5.34	*	
3822.50	20				
	36	106.18			
765.17	2	382.58	3.60	*	
3822.50	36	106.18			
2450.17	2	1225.08	11.54	*	
3822.50	36	106.18			
	3822.50 2450.17	3822.50 <u>36</u> 2450.17 2	3822.5036106.182450.1721225.08	3822.5036106.182450.1721225.0811.54	703.17 2 362.38 3.60 3822.50 36 106.18 2450.17 2 1225.08 11.54 *

simple simple effects...

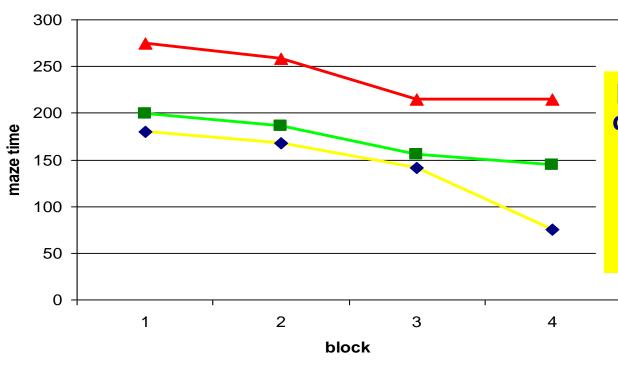
- we could conduct follow-up comparisons for the 3 groups at block 4 – this would be identical to the follow up for the main effect of group we did earlier – I.e. could use linear contrasts with MSSwithinG@B4 [same error term as original simple effect]
- but for now, I think we have all had enough!

summary of findings for the study...

significant effect of block

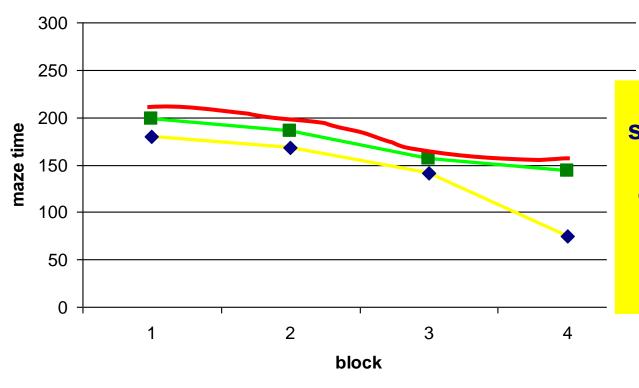
- faster times at block 4 than block 1 (indicates learning)

significant effect of group


 normal (control) group was faster than the drug group which was faster than the lesion group

significant interaction

- learning was occurring for each group
- groups were performing at a different level at each block
- if we followed this up further we might find that the largest differences were in block 4



mixed support overall...

possibly some kind of confound leading to the lesion group's performance being severely impaired

mixed support overall...

Damage was supposed to impair <u>learning</u>, so this graph would have been a more theoretically pleasing result

bottom line

- the really tricky stuff with within-subjects and mixed anova is sorting out the error terms
- the logic is similar though:
 - The error term for between main effects is subjects within groups
 - The appropriate error term for within effects is always the effect being examined in interactions with the random factor subjects

In class next week:

- Brief bit on logistic regression
- Overview of course themes as I see them; general pontificating
- T-VALS
- Discussion of exam and practice exam

In the tutes:

- This week: Consult for A2
- Next week: Practice exam readings :
- Howell Ch. 14 pp. 577-582
- Logistic Regression in Field: Ch 16-16.5,16.6