## psyc3010 lecture 10

## Mediation in MR <br> One and two-way within subjects anova

Before the break: moderated multiple regression next week: mixed anova

## two weeks ago $\rightarrow$ this week

- Before the break we looked at how to test interactions in multiple regression - and saw that it achieved a similar thing to factorial anova.
- this week we go back to anova to look at within subjects designs
- One-way
- Two-way
- But before that, the grooviness of mediation in MR!


## hierarchical models are used to:

- control for nuisance variable(s)
- answer theoretical questions about the relative contribution of sets of variables
- test moderated relationships (interactions) $\hat{Y}=b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{1} X_{2}+a$
- test for curvilinear relationships $\hat{Y}=b_{1} X+b_{2} X^{2}+a$
- test categorical variables with >2 levels
- test hypothesized causal order:
- Mediation (also via path analysis, structural equation modelling, etc. - in later courses!)


## what mediation means

- so far, we've considered direct relationships between predictors and a criterion e.g., more study time $\rightarrow$ higher exam mark
- sometimes, these relationships don't say much about underlying processes or mechanisms
$\rightarrow$ why does increased study time improve exam marks?
- a third variable, or mediator, may explain or account for the relationship between an IV and a DV
e.g., study time $\rightarrow$ retention of material $\rightarrow$ exam mark
- thus, the original predictor has an indirect relationship with the criterion


# mediation: <br> IV causes DV indirectly through mediator 


:1) IV is related to ('causes') mediator (path a)
:2) IV is related to DV
:3) mediator is related to DV (path b)
(path c)
:4) IV is no longer related to DV when effect of mediator is controlled for (path b.c)

## testing and reporting mediation

1. IV is related to mediator
(path a)

- Conduct regression of mediator on IV. Report sig R2 and b or beta.

2. IV is related to DV
(path b)

- Conduct HMR regressing DV on IV alone in block 1. Report sig R2 and b or beta.

3. mediator is related to DV (path c)
4. when paths a and c are controlled, path b is no longer significant

- Add mediator in Block 2. R2 change need not increase significantly - if coefficient for mediator is sig, condition (ii) is met. If IV coefficient in block 2 is no longer significant, condition (iv) is met. Report sig coeff for mediator and IV ns in this block and conclude, since all 4 conditions are met, that the effect of the IV on the DV is fully mediated by the mediator.
- Often in write-up you would also present a figure, as on previous slide
- Also need to conduct "Sobel test" to see if mediation is reliable - see http://www.people.ku.edu/~preacher/sobel/sobel.htm if interested.


## moderation vs mediation

- moderation and mediation are two widely confused terms
- in moderation: 1. The direct X -> Y relationship is the focus. At low $Z$, the $X->Y$ relationship is stronger, weaker, or reversed compared to the $\mathrm{X}->\mathrm{Y}$ relationship at high Z . I.e., X \& Z interact. 2. There is no "because". 3. Moderator could be (and often is) uncorrelated with IV. E.g., Exercise interacts with (weakens effect of) life hassles $->$ lower well-being.
- in mediation, 1. The indirect relationship of $X$-> $Y$ via $Z$ is the focus. 2. $X$ causes $Y$ because $X$ causes $Z$ which in turn causes $\mathrm{Y}: \mathrm{X} \rightarrow \mathrm{Z} \rightarrow \mathrm{Y}$. 3. The mediator is associated with the IV (positively or negatively). E.g., Exercise -> lower subjective stress -> well-being.



## anova - a second look

- between-subjects designs
- each person serves in only one treatment/cell
- we then assume that any difference between them is due to our experimental manipulation (or intrinsic features of the grouping variable, e.g., gender)
- Within-cell variability is residual error
- within-subjects (repeated-measures) designs
- what if each subject served in each treatment?
- violates the assumption of independence in factorial ANOVA because scores for the participant are correlated across conditions
- but we can calculate and remove any variance due to dependence
- thus, we can reduce our error term and increase power


## an illustration

treatment

| subject | 1 | 2 | 3 | mean |
| :---: | :--- | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |

## treatment means don't differ by much - far more variability within each group than between

## an illustration

treatment

| subiect | 1 | 2 | 3 | mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |

most of this within-group variance is caused by the fact that some subjects learn quickly, and some learn slowly - i.e., people are different
In between-subjects design, all within-group variance is error, whereas repeated measures design remove individual difference variation from the error term.

## an illustration

treatment

| subiect | 1 | 2 | 3 | mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |

solution: firstly remove the between-subjects variance (i.e., account for individual differences) and then compare our treatment means

## Understanding RM versus BS designs

- In between subjects, assign people randomly to j conditions
- Total Variance = Between group + within group
- Treatment effect = between group variance
- Error = within group variance
- No subject variability because each participant has only 1 data point (no variance within individual)


## 1-way between-subjects anova:



## Understanding RM designs

- In fully within subjects design, people are tested in each of j conditions
" "subject" factor is crossed with IV (e.g., factor A)
- End up with A x S design with only 1 observation per cell
- No within-cell variance - now a cell is one observation (for person i in condition j)
- So what is error?
- Interaction of A x S - i.e., the changes (inconsistency) in the effects of A across subjects


## $A \times S$ design

treatment

| subject | 1 | 2 | 3 | mean |
| :---: | :--- | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |
|  |  |  |  |  |
|  |  |  |  |  |

Overall, treatment effect for $1=16-18.67(-2.67)$ treatment effect for $2=19-18.67(+0.33)$ treatment effect for $3=21-18.67(+2.33)$

## A x S design

treatment

| subject | 1 | 2 | 3 | mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |

For S1, treatment effect for $1=2-4.33(-2.33)$
treatment effect for $2=4-4.33(-0.33)$
treatment effect for $3=7-4.33(+2.67)$

## $A \times S$ design

treatment

| subject | 1 | 2 | 3 | mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |
|  |  |  |  |  |
|  |  |  |  |  |

For S2, treatment effect for $1=10-11.67(-1.67)$ treatment effect for $2=12-11.67(+0.33)$ treatment effect for $3=13-11.67(+1.33)$

## $A \times S$ design

treatment

| subject | 1 | 2 | 3 | mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 | 4.33 |
| 2 | 10 | 12 | 13 | 11.67 |
| 3 | 22 | 29 | 30 | 27.00 |
| 4 | 30 | 31 | 34 | 31.67 |
| mean | 16 | 19 | 21 | 18.67 |
|  |  |  |  |  |
|  |  |  |  |  |

For S3, treatment effect for $1=22-27(-5)$
treatment effect for $2=29-27(+2)$
treatment effect for $3=30-27(+3)$

## 1-way within-subjects anova:



## Within-subjects design

- Total Variance = Between subjects + within subjects
Between subjects variance due to individual differences is partitioned out of error (and treatment)!
- Within subjects = between treatment [treatment effect] + treatment x subject interaction [residual error - i.e., inconsistencies in the treatment effect]
- F test = TR / TR x S
- Acknowledges reality that variability within conditions/groups and between conditions/groups are both influenced by subject factor [people doing study]


## the conceptual model

$$
X_{i j}=\underset{\text { for } i \text { cases and } j \text { treatments: }}{\boldsymbol{\mu}}+\boldsymbol{\pi}_{i}+\boldsymbol{\tau}_{j}+\boldsymbol{e}_{i j}
$$

$X_{i j}$ any DV score is a combination of:
$\mu \rightarrow$ the grand mean,
$\pi_{i} \rightarrow$ variation due to the $i$-th person $\left(\mu_{i}-\mu\right)$
$\tau_{j} \rightarrow$ variation due to the $j$-th treatment $\left(\mu_{j}-\mu\right)$
$e_{i j} \rightarrow$ error - variation associated with the $i$-th cases in the $j$-th treatment - error $=\pi \tau_{i j}$ (plus chance)

## partitioning the variance



$\square$ error (TRxS)<br>$\square$ treatment<br>$\square$ subjects

## worked example

## basic learning study

- 1-way within-subjects design ( $n=5$ )
- IV: block
- 40 trials through whole experiment
- want to compare over 4 blocks of 10 to see if learning has occurred
- DV = number of correct responses per block


## correct trials over 4 blocks of 10

block 1 block2 block3 block 4 subj total

| subject 1 | 4 | 3 | 6 | 5 | $\mathbf{1 8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| subject 2 | 4 | 4 | 7 | 8 | $\mathbf{2 3}$ |
| subject 3 | 1 | 2 | 1 | 3 | $\mathbf{7}$ |
| subject 4 | 1 | 4 | 5 | 5 | $\mathbf{1 5}$ |
| subject 5 | 5 | 7 | 6 | 9 | $\mathbf{2 7}$ |
|  |  |  |  |  |  |
| block total | $\mathbf{1 5}$ | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 0}$ | $\mathbf{9 0}$ |
| block mean | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |  |

## Definitional formulae

- Total variability - deviation of each observation from the grand mean:

$$
S S_{T}=\sum\left(Y_{i j}-\bar{Y} . .\right)^{2}
$$

- Variability due to factor - deviation of factor group means from grand mean:

$$
S S_{A}=n \sum\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}
$$

- Variability due to subjects - deviation of each subject's mean from the grand mean:

$$
S S_{S}=a \sum \sum\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}
$$

- Error - changes (inconsistencies) in the effect of factor across subjects (TR $\times S$ interaction):

$$
S S_{A x S}=\sum \sum\left(Y-\bar{Y}_{i .}-\bar{Y}_{. j}+\bar{Y}_{. .}\right)^{2} \text { or } S S_{A x S}=S S_{T}-S S_{A}-S S_{S}
$$

## computations

$$
\begin{aligned}
& \Sigma X^{2}=\mathbf{5 0 4} \\
& \frac{(\Sigma X)^{2}}{N}=\mathbf{9 0} 0^{2} / 20=405 \\
& S S_{\text {total }}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=504-405=99 \\
& S S_{S S}=\frac{\sum \mathrm{T}_{\mathrm{S}}{ }^{2}}{\mathrm{~b}}-\frac{(\Sigma X)^{2}}{N}=18^{2}+23^{2}+7^{2}+15^{2}+27^{2} / 4-\mathbf{4 0 5}=\mathbf{5 9} \\
& S S_{T R}=\frac{\sum T_{j}^{2}}{n}-\frac{(\Sigma X)^{2}}{N}=15^{2}+20^{2}+25^{2}+30^{2} / 5-405=\mathbf{2 5} \\
& S S_{\text {error }}=S S_{\text {total }-S S_{S}-S S_{T R}=99-59-25=15}
\end{aligned}
$$

## degrees of freedom

number of subjects * number of conditions

$$
\begin{aligned}
& \boldsymbol{d} f_{\text {total }}=\mathrm{nj}-1=\mathrm{N}-1=19 \\
& \boldsymbol{d} f_{s}=\mathrm{n}-1=4
\end{aligned} \text { Big } \mathrm{N}=\text { Number of observations }
$$

$$
d f_{t r}=j-1=3
$$

$$
d f_{\text {error }}=(n-1)(j-1)=12
$$

error df is different from between-subjects anova - because error is now interaction of subject factor $x$ treatment factor

## the summary table

| Source | SS | df | MS | F |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Between subjects (S) | 59 | 4 | 14.75 |  |
| Treatment (TR) | $\mathbf{2 5}$ | $\mathbf{3}$ | $\mathbf{8 . 3 3}$ | $\mathbf{6 . 6 6}^{*}$ |
| Error | $\mathbf{1 5}$ | $\mathbf{1 2}$ | $\mathbf{1 2 5}$ |  |
| Total |  | $\mathbf{9 9}$ | $\mathbf{1 9}$ |  |
| ${ }^{*} \boldsymbol{p}<\mathbf{0 5}$ | $\boldsymbol{F}_{\text {crit }}(\mathbf{3 , 1 2})=\mathbf{3 . 4 9}$ |  |  |  |
|  |  |  |  |  |

$M S_{s}=$ estimate of variance in DV attributable to INDIVIDUAL DIFFERENCES (averaged over treatment levels) - but ignore this \& don't report in write-up $M S_{T R}=$ estimate of variance in DV attributable to TREATMENT (averaged over subjects)
$M S_{\text {Error }}=$ RESIDUAL: estimate of variance in DV not attributable to S or TR (interaction - the change in the treatment effect across subjects = error)
assuming the data was obtained from a between-subjects design . . .

| Source | SS | df | MS | F |
| :--- | :---: | :---: | :---: | :---: |
| Treatment (TR) |  |  |  |  |
| Error | 25 | 3 | 8.33 | 1.80 |
|  | 74 | 16 | 4.63 |  |
| Total | 99 | 19 |  |  |

$$
F_{\text {crit }}(3,16)=3.24
$$

in between-subjects designs, individual differences are inseparable from error, hence contribute to the error term in within-subjects designs it is possible to partial out (i.e., remove) individual differences from the error term smaller error term $\rightarrow$ greater POWER ()

## a note on error terms...

- hand calculations in within-subjects anova are no different to those in betweensubjects anova
- only the error term (and df) changes
- in 1-way within-subjects the error term (and df) is the treatment $x$ subjects interaction
$-\mathrm{MS}_{\text {error }}=\mathrm{MS}_{\mathrm{TRxS}}$


## following up the main effect of treatment . .

| Source | SS | df | MS | F |
| :--- | :---: | :---: | :---: | :---: |
| Treatment (TR) | 25 | 3 | 8.33 | $6.66^{\star}$ |
| Error | 15 | 12 | 1.25 |  |
| Total |  |  |  |  |

* $p<.05 \quad F_{\text {crit }}(3,12)=3.49$
in between-subjects anova, MS $_{\text {error }}$ is the term we would use to test any effect, including simple comparisons [error = differences between subjects - expect within-cell variance is the same across conditions]
but within-subjects ANOVA we partition out and ignore the main effect of subjects and compute an error term estimating inconsistency as subjects change over WS levels


## separate error terms: following-up main effects

- We expect inconsistency in TR effect $x$ subjects so in simple comparisons use only data for conditions involved in comparison \& calculate separate error terms each time

|  | block 1 | block2 | block3 | block 4 |
| :--- | :---: | :---: | :---: | :---: | subj total |  |
| :--- |
|  |
| subject 1 |
| subject 2 |

## B2 vs B3

## separate error terms: following-up main effects

- We expect inconsistency in TR effect x subjects so in simple comparisons use only data for conditions involved in comparison \& calculate separate error terms each time

|  | block 1 | block2 | block3 | block 4 | subj total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| subject 1 | 4 | 5 | 9 |  |  |
| subject 2 | 4 | 8 | $\mathbf{1 2}$ |  |  |
| subject 3 | 1 | 3 | $\mathbf{4}$ |  |  |
| subject 4 | 1 | 5 | $\mathbf{6}$ |  |  |
| subject 5 | 5 | 9 | $\mathbf{1 4}$ |  |  |
|  |  | 30 |  |  |  |
| block total | $\mathbf{1 5}$ | $\mathbf{6}$ |  |  |  |
| block mean | $\mathbf{3}$ |  |  |  |  |
|  |  |  |  |  |  |

## Simple comparisons in

## between-subjects anova:



## Simple comparisons in RM designs:

## total variation

between-subjects


## between-treatments

residuals


Partition treatment variance and residual variance for follow-ups. Each contrast effect is tested against error term $=\mathrm{C} \times \mathrm{S}$ interaction

## calculations <br> (contrast 1 only)

$\Sigma X^{2}=241$
$\frac{(\Sigma X)^{2}}{N}=45^{2} / 10=202.5$
$S S_{\text {total }_{\text {comp }}}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=241-202.5=\mathbf{3 8 . 5}$
$S S_{S S_{\text {comp }}}=\frac{\sum_{j}^{T_{s}^{2}}-\frac{(\Sigma X)^{2}}{N}=9^{2}+11^{2}+3^{2}+9^{2}+13^{2} / 2-202.5=28 ~}{\text { 2 }}$
$S S_{\text {contrast }}=\frac{\sum T_{J}^{2}}{n}-\frac{(\Sigma X)^{2}}{N}=20^{2}+25^{2} / 5-202.5=2.5$
$S S_{T R_{\text {comp }}} x S=S S_{\text {total }-S S_{S}-S S_{\text {contrast }}=38.5-28-2.5=8}$

## calculations <br> (contrast 1 only)

alternatively, use the formula from the earlier anova lectures:

$$
\begin{aligned}
S_{\text {contrast }} & =\frac{\mathrm{nL}^{2}}{\sum \mathrm{a}_{\mathrm{j}}^{2}} \\
\text { where } \mathrm{L} & =\sum \mathrm{a}_{\mathrm{j}} \overline{\mathrm{X}}_{\mathrm{j}} \\
& =4(1)+5(-1)=-1 \\
& \begin{aligned}
S S_{\text {contrast }} & =\frac{5\left(-1^{2}\right)}{2} \\
& =\mathbf{2 . 5}
\end{aligned}
\end{aligned}
$$

## summary table

these are the $\mathrm{SS}_{\text {contrasts }}$ we can calculate in the same way as in between-subjects anova
$d f$ for comparison is same as usual (i.e., 1)

| Source | SS | df | MS | F |
| :---: | :---: | :---: | :---: | :---: |
| B2 vs B3 | 2.5 | 1 | 2.5 | 1.25 |
| Error | 8 | 4 | 2 |  |
| B1 vs B4 | 22.5 | 1 | 22.5 | 22.5* |
| Error | 4 | 4 | 1 |  |
| ${ }_{\text {SxL }}$ terms we calculate ely for each withins effect$\begin{aligned} d f_{\text {error }} & =(n-1)(j-1) \\ & =(5-1)(2-1) \\ & =4 \end{aligned}$ |  |  |  |  |

## 2-way within-subjects designs

- calculations are similar to a 2-way betweensubjects ANOVA
- main effects for $A$ and $B$ are tested, as well as a $A x B$ interaction
- with a within-subjects design, each effect tested has a separate error term
- this error term simply corresponds to an interaction between the effect due to SUBJECTS, and the treatment effect
- main effect of A
- main effect of B
- AxB interaction
$\rightarrow$ error term is $M S_{A x S}$
$\rightarrow$ error term is $M S_{B x S}$
$\rightarrow$ error term is $M S_{A B x S}$


## 2-way between-subjects anova:



## 2-way within-subjects anova:

## total variation

## between-treatments



Partition treatment variance and residual variance for each effect. Each effect is tested against error term $=$ effect $\times S$ interaction

## 2-way within-subjects example

another learning study:

- $2 \times 4$ repeated-measures factorial design ( $n=4$ )
- first factor: phase
- phase 1: no reinforcement (100 trials)
- phase 2: reward for correct response (100 trials)
- second factor: block
- each phase split into four blocks of 25
- enables us to compare performance for trials later in each phase with trials early in each phase - thereby assessing learning
- DV = number of correct responses per block


## Phase x Block repeated measures design [phase x block x subjects]

## PBS Matrix

|  | p1 |  |  |  |  | p2 |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b1 | b2 | b3 | b4 |  |  |  |  |  |
|  | b1 | b2 | b3 | b4 |  |  |  |  |  |
| subject 1 | 3 | 4 | 3 | 7 |  | 5 | 6 | 7 | 11 |
| subject 2 | 6 | 8 | 9 | 12 |  | 10 | 12 | 15 | 18 |
| subject 3 | 7 | 13 | 11 | 11 |  | 10 | 15 | 14 | 15 |
| subject 4 | 0 | 3 | 6 | 6 |  | 5 | 7 | 9 | 11 |

PS matrix

|  | p1 | p2 |  |
| :--- | :--- | :--- | :--- |
| subject 1 | 17 | 29 | $\mathbf{4 6}$ |
| subject 2 | 35 | 55 | $\mathbf{9 0}$ |
| subject 3 | 42 | 54 | $\mathbf{9 6}$ |
| subject 4 | 15 | 32 | $\mathbf{4 7}$ |

BS matrix

|  | b1 | b2 | b3 | b4 |
| :--- | :---: | :---: | :---: | :---: |
| subject 1 | 8 | 10 | 10 | 18 |
| subject 2 | 16 | 20 | 24 | 30 |
| subject 3 | 17 | 28 | 25 | 26 |
| subject 4 | 5 | 10 | 15 | 17 |

## PB matrix

p1

| b1 | b2 | b3 | b4 |  |
| :--- | :--- | :--- | :--- | :--- |
| 16 | 28 | 29 | 36 | $\mathbf{1 0 9}$ |
| 30 | 40 | 45 | 55 | $\mathbf{1 7 0}$ |
| $\mathbf{4 6}$ | $\mathbf{6 8}$ | $\mathbf{7 4}$ | $\mathbf{9 1}$ | $\mathbf{2 7 9}$ |

## calculations

$\Sigma X^{2}=2995 \quad \frac{(\Sigma X)^{2}}{N}=279^{2} / 32=2432.53$
$S S_{\text {total }}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=2995-2432.53=\underline{\mathbf{5 6 2 . 4 7}}$

|  | b1 |  | b2 | b3 | b4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| subject 1 | 8 | 10 | 10 | 18 | 46 |
| subject 2 | 16 | 20 | 24 | 30 | 90 |
| subject 3 | 17 | 28 | 25 | 26 | 96 |
| subject 4 | 5 | 10 | 15 | 17 | 47 |

BETWEEN SUBJECTS EFFECT:
$S S_{S}=\frac{\sum \mathrm{T}_{\mathrm{s}}^{2}}{\mathrm{pb}}-\frac{(\Sigma X)^{2}}{N}=46^{2}+90^{2}+96^{2}+47^{2} / 8-2432.53=\underline{\mathbf{2 7 2 . 6 0}}$
WITHIN SUBJECTS EFFECTS:
$S S_{P}=\frac{\sum T_{r}^{2}}{n b}-\frac{(\Sigma X)^{2}}{N}=109^{2}+170^{2} / 16-2432.53=\underline{\mathbf{1 1 6 . 2 8}}$
$S S_{B}=\frac{\sum T_{s}^{2}}{n p}-\frac{(\Sigma X)^{2}}{N}=46^{2}+68^{2}+74^{2}+91^{2} / 8-2432.53=\underline{\mathbf{1 2 9 . 6 0}}$
$S S_{\text {cells } P B}=\frac{\sum_{r e e^{2}}}{n}-\frac{(\Sigma X)^{2}}{N}=16^{2}+30^{2}+28^{2}+40^{2}+29^{2}+45^{2}+36^{2}+55^{2} / 4-2432.53$ $=249.22$
$S S_{P B}=S S_{\text {cells }} P B-S S_{P}-S S_{B}=249.22-116.28-129.60=\underline{\mathbf{3 . 3 4}}$

# calculations 

$\Sigma X^{2}=2995 \quad \frac{(\Sigma X)^{2}}{N}=279^{2} / 32=2432.53$
$S S_{\text {total }}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=2995-2432.53=\underline{\mathbf{5 6 2 . 4 7}}$
PS matrix

BETWEEN SUBJECTS EFFECT:
$S S_{S}=\frac{\sum \mathrm{T}_{\mathrm{s}}^{2}}{\mathrm{pb}}-\frac{(\Sigma X)^{2}}{N}=46^{2}+\mathbf{9 0} 0^{2}+96^{2}+47^{2} / 8-2432.53=\underline{\mathbf{2 7 2 . 6 0}}$
WITHIN SUBJECTS EFFECTS:
$S S_{P}=\frac{\sum T_{p}^{2}}{n b}-\frac{(\Sigma X)^{2}}{N}=109^{2}+170^{2} / 16-2432.53=\underline{\mathbf{1 1 6 . 2 8}}$
$S S_{B}=\frac{\sum T_{s}^{2}}{n p}-\frac{(\Sigma X)^{2}}{N}=46^{2}+68^{2}+74^{2}+91^{2} / 8-2432.53=\underline{\mathbf{1 2 9 . 6 0}}$
$S S_{\text {cells } P B}=\frac{\sum_{r e x}{ }^{2}}{n}-\frac{(\Sigma X)^{2}}{N}=16^{2}+30^{2}+28^{2}+40^{2}+29^{2}+45^{2}+36^{2}+55^{2} / 4-2432.53$ $=249.22$
$S S_{P B}=S S_{\text {cells }} P B-S S_{P}-S S_{B}=249.22-116.28-129.60=\underline{\mathbf{3 . 3 4}}$

## calculations

$\Sigma X^{2}=2995 \quad \frac{(\Sigma X)^{2}}{N}=279^{2} / 32=2432.53$
$S S_{\text {total }}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=2995-2432.53=\underline{\mathbf{5 6 2 . 4 7}}$
BETWEEN SUBJECTS EFFECT:

WITHIN SUBJECTS EFFECTS:
$S S_{P}=\frac{\sum T_{b}^{2}}{n b}-\frac{(\Sigma X)^{2}}{N}=109^{2}+170^{2} / 16-2432.53=\underline{\mathbf{1 1 6 . 2 8}}$
$S S_{B}=\frac{\sum T_{s}^{2}}{n p}-\frac{(\Sigma X)^{2}}{N}=46^{2}+68^{2}+74^{2}+91^{2} / 8-2432.53=\underline{\mathbf{1 2 9 . 6 0}}$
$S S_{\text {cells } P B}=\frac{\sum T_{r e}{ }^{2}}{n}-\frac{(\Sigma X)^{2}}{N}=16^{2}+30^{2}+28^{2}+40^{2}+29^{2}+45^{2}+36^{2}+55^{2} / 4-2432.53$ $=249.22$
$S S_{P B}=S S_{\text {cellsPB }}-S S_{P}-S S_{B}=249.22-116.28-129.60=\underline{\mathbf{3 . 3 4}}$

PS matrix

## calculations

ERROR TERM (P):
$S S_{\text {cellsPxS }}=\frac{\sum T_{P S}{ }^{2}}{b}-\frac{\sum X^{2}}{N}=\mathbf{1 7}^{2}+35^{2}+\ldots+54^{2}+32^{2} / \mathbf{4}-\mathbf{2 4 3 2 . 5 3}=\mathbf{3 9 4 . 7 2}$
$S S_{P x S}=S S_{\text {cells } P x S}-S S P-S S_{S}=394.72-116.28-272.60=\underline{\mathbf{5 . 8 4}}$
ERROR TERM (B):
$S S_{c e l l s B x S}=\frac{\sum T_{B S}{ }^{2}}{p}-\frac{\sum X^{2}}{N}=\mathbf{8}^{2}+\mathbf{1 6}^{2}+\ldots+26^{2}+17^{2} / 2-2432.53=433.97$
$S S_{B x S}=S S_{C e l l s B x S}-S S_{B}-S S_{S}=433.97-129.6-272.60=\underline{\mathbf{3 1 . 7 7}}$
ERROR TERM (AB):

$$
\begin{aligned}
S S_{P B x S} & =S S_{\text {total }}-S S_{S}-S S_{P}-S S_{B}-S S_{P B}-S S_{P x S}-S S_{B x S} \\
& =562.47-272.60-116.28-129.60-3.34-5.84-31.77=\underline{\mathbf{3 . 0 4}}
\end{aligned}
$$

NB how unlike regular between subjects ANOVA need to calculate a new error term (factor $x$ subject) for each $F$ test
(you'll find $\mathrm{SS}_{\mathrm{P}}$ and $\mathrm{SS}_{\mathrm{S}}$ on previous slide)

## summary table . . .

Source $\quad S S \quad d f \quad M S \quad F$

Between subjects
272.6
390.867

| P | 116.28 | 1 | 116.28 | $59.63^{*}$ |
| :--- | ---: | ---: | ---: | ---: |
| PxS | 5.84 | 3 | 1.95 |  |
|  |  |  |  |  |
| B | 129.6 | 3 | 43.20 | $\mathbf{1 2 . 2 4 *}$ |
| BxS | 31.77 | 9 | 3.53 |  |
|  |  |  |  |  |
| PB | 3.34 | 3 | 1.11 | $\mathbf{3 . 2 6}$ |
| PBxS | 3.04 | 9 | 0.34 |  |

Critical $F(1,3)=10.13$
Critical $F(3,9)=3.86$

## following up main effects

- as with one-way repeated measures designs, use of error term for effect (e.g., $M S_{B x S}$ ) is not appropriate for follow-up comparisons
- a separate error term must be calculated for each comparison undertaken $\left(M S_{B_{\text {comp }}}\right)$

| Source | $S S$ | $d f$ | $M S$ | $F$ |
| :---: | :---: | :---: | :---: | :---: |
| $B_{\text {COMP }}$ | 18.06 | 1 | 18.06 | $\mathbf{6 . 6 2}$ |
| $B_{\text {COMPX }}$ | 8.19 | 3 | 2.73 |  |
| Critical $F(1,3)=$ | 10.13 |  |  |  |

## following up interactions . .

- again, separate error terms must be used for each effect tested
- simple effects
- error term is MS

A at B1xs

- the interaction between the $A$ treatment and subjects, at B1
- simple comparisons
- error term is MS
- interaction between the $A$ treatment (only the data contributing to the comparison, $A_{\text {Comp }}$ ), and subjects, at B1


## 2 approaches to within-subjects designs - mixed-model approach

- what we have been doing with hand calculations
- treatment is a fixed factor, subjects is a random factor
- Fixed factor: You chose the levels of the IV.
- You have sampled all the levels of the IV or
- You have selected particular levels based on a theoretical reason
- Random factor: The levels of the IV are chosen at random
- Random factors have different error terms: all ANOVA we have done to date has assumed the IVs are fixed. For most of you, the subject factor is the only random factor you will ever meet (be grateful). ©) You can read up on random factor ANOVA models in advanced textbooks if you need to (e.g., as a postgrad).
- powerful when assumptions are met
- mathematically user-friendly
- just like a factorial anova
- restrictive assumptions, but adjustments available if they are violated
- multivariate approach... which we will discuss briefly later ${ }_{56}$


## assumptions of mixed-model approach

- not dissimilar to between-subjects assumptions:

1. sample is randomly drawn from population
2. DV scores are normally distributed in the population
3. compound symmetry

- homogeneity of variances in levels of repeated-measures factor
- homogeneity of covariances (equal correlations/covariances between pairs of levels)


## compound symmetry

- the variance-covariance matrix:

$$
\Sigma=\left[\begin{array}{llll} 
& \text { T1 } & \text { T2 } & \text { T3 } \\
\text { T1 } & 158.92 & 163.33 & 163.00 \\
\text { T2 } & 163.33 & 172.67 & 170.67 \\
\text { T3 } & 163.00 & 170.67 & 170.00
\end{array}\right]
$$

## compound symmetry

- the variance-covariance matrix:

$$
\Sigma=\left[\begin{array}{cccc} 
& \mathrm{T} 1 & \mathrm{~T} 2 & \text { T3 } \\
\mathrm{T} 1 & 158.92 & 163.33 & 163.00 \\
\text { T2 } & 163.33 & 172.67 & 170.67 \\
\text { T3 } & 163.00 & 170.67 & 170.00
\end{array}\right]
$$

compound symmetry requires that variances are roughly equal (homogeneity of variance)

## compound symmetry

- the variance-covariance matrix:

$$
\Sigma=\left[\begin{array}{cccc}
\text { T1 } & \text { T2 } & \text { T3 } \\
\text { T1 } & 158.92 & 163.33 & 163.00 \\
\text { T2 } & 163.33 & 172.07 & 170.67 \\
\text { T3 } & 163.00 & 170.67 & 170.00
\end{array}\right]
$$

compound symmetry requires that covariances are roughly equal (homogeneity of covariance)

## Mauchly's test of sphericity

- compound symmetry is a very restrictive assumption - often violated
- sphericity is a more broad and less restrictive assumption
- SPSS - Mauchley's test of sphericity
- examines overall structure of covariance matrix
- determines whether values in the main diagonal (variances) are roughly equal, and if values in the off-diagonal are roughly equal (covariances)
- evaluated as $\chi^{2}$ - if significant, sphericity assumption is violated
- not a robust test AT ALL - very commonly fail to find Mauchley's sphericity is sig even when violations of sphericity are present in the data


## violations of sphericity

when sphericity doesn't matter

- in between-subjects designs, because treatments are unrelated (different subjects in different treatments)
- the assumption of homogeneity of variance still matters though
- when within-subject factors have two levels, because only one estimate of covariance can be computed
when it does matter
- in all other within-subjects designs
- when the sphericity assumption is violated, F-ratios are positively biased
- critical values of $F$ [based on df $a-1,(a-1)(n-1)]$ are too small
- therefore, probability of type-1 error increases


## adjustments to degrees of freedom

- Best to assume that have a problem and make adjustment proactively - change critical F by adjusting degrees of freedom
- epsilon (\&) adjustments
- epsilon is simply a value by which the degrees of freedom for the test of F-ratio is multiplied
- equal to 1 when sphericity assumption is met (hence no adjustment), and < 1 when assumption is violated
- the lower the epsilon value (further from 1), the more conservative the test becomes


## different types of epsilon

- Lower-bound epsilon
- Act as if have only 2 treatment levels with maximal heterogeneity
- used for conditions of maximal heterogeneity, or worst-case violation of sphericity $\rightarrow$ often too conservative
- Greenhouse-Geisser epsilon
- size of $\mathcal{E}$ depends on degree to which sphericity is violated
- $1 \geq \varepsilon \geq 1 /(k-1)$ : varies between 1 (sphericity intact) and lower-bound epsilon (worst-case violation)
- generally recommended - not too stringent, not too lax


## different types of epsilon

- Huynh-Feldt epsilon
- an adjustment applied to the GG-epsilon
- often results in epsilon exceeding 1, in which case it is set to 1
- used when "true value" of epsilon is believed to be $\geq .75$


## spss output from our previous example

## Mauchly's Test of Sphericity

Measure: MEASURE 1

| Within Subjects Effec | Mauchly 's W | Approx. <br> Chi-Square | df | Sig. | Epsilon ${ }^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Greenhous e-Geisser | Huy nh-Feldt | Lower-bound |
| PHASE | 1.000 | . 000 | 0 |  | 1.000 | 1.000 | 1.000 |
| BLOCK | . 111 | 3.785 | 5 | . 634 | . 587 | 1.000 | . 333 |
| PHASE * BLOCK | . 000 |  | 5 |  | . 348 | . 370 | . 333 |

Tests the null hy pothes is that the error covariance matrix of the orthonormalized transformed dependent $v$ ariables is proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the av eraged tests of significance. Corrected tests are display ed Tests of Within-Subjects Effects table.
b.

Design: Intercept
Within Subjects Design: PHASE+BLOCK+PHASE*BLOCK

## no test for effects involving phase - only 2 levels

test for block is not significant (sphericity not violated) but we aren't going to trust it!

## spss output from our previous example

## Mauchly's Test of Sphericity

Measure: MEASURE 1

| Within Subjects Effec | Mauchly 's W | Approx. Chi-Square | df | Sig. | Epsilon ${ }^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Greenhous e-Geisser | Huy nh-Feldt | Lower-bound |
| PHASE | 1.000 | . 000 | 0 |  | 1.000 | 1.000 | 1.000 |
| BLOCK | . 111 | 3.785 | 5 | . 634 | 587 | 1.000 | . 333 |
| PHASE * BLOCK | . 000 | . | 5 | . | . 348 | . 370 | . 333 |

Tests the null hy pothes is that the error covariance matrix of the orthonormalized transformed dependent $v$ ariables is proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the av eraged tests of significance. Corrected tests are display ed Tests of Within-Subjects Effects table.
b.

Design: Intercept
Within Subjects Design: PHASE+BLOCK+PHASE*BLOCK

## compare the epsilon values...

| Source |  | Ty pe III Sum of Squares | df | Mean Square | F | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHASE | Sphericity Assumed | 116.281 | 1 | 116.281 | 59.695 | . 005 |
|  | Greenhouse-Geisser | 116.281 | 1.000 | 116.281 | 59.695 | . 005 |
|  | Huy nh-Feldt | 116.281 | 1.000 | 116.281 | 59.695 | . 005 |
|  | Lower-bound | 116.281 | 1.000 | 116.281 | 59.695 | . 005 |
| Error(PHASE) | Sphericity Assumed | 5.844 | 3 | 1.948 |  |  |
|  | Greenhouse-Geisser | 5.844 | 3.000 | 1.948 |  |  |
|  | Huy nh-Feldt | 5.844 | 3.000 | 1.948 |  |  |
|  | Lower-bound | 5.844 | 3.000 | 1.948 |  |  |
| BLOCK | Sphericity Assumed | 129.594 | 3 | 43.198 | 12.233 | . 002 |
|  | Greenhouse-Geisser | 129.594 | 1.760 | 73.621 | 12.233 | . 011 |
|  | Huy nh-Feldt | 129.594 | 3.000 | 43.198 | 12.233 | . 002 |
|  | Lower-bound | 129.594 | 1.000 | 129.594 | 12.233 | . 040 |
| Error(BLOCK) | Sphericity Assumed | 31.781 | 9 | 3.531 |  |  |
|  | Greenhouse-Geisser | 31.781 | 5.281 | 6.018 |  |  |
|  | Huy nh-Feldt | 31.781 | 9.000 | 3.531 |  |  |
|  | Lower-bound | 31.781 | 3.000 | 10.594 |  |  |
| PHASE * BLOCK | Sphericity Assumed | 3.344 | 3 | 1.115 | 3.309 | . 071 |
|  | Greenhouse-Geisser | 3.344 | 1.043 | 3.207 | 3.309 | . 163 |
|  | Huy nh-Feldt | 3.344 | 1.109 | 3.016 | 3.309 | . 159 |
|  | Lower-bound | 3.344 | 1.000 | 3.344 | 3.309 | . 166 |
| Error(PHASE*BLOCK) | Sphericity Assumed | 3.031 | 9 | . 337 |  |  |
|  | Greenhouse-Geisser | 3.031 | 3.128 | . 969 |  |  |
|  | Huy nh-Feldt | 3.031 | 3.326 | . 911 |  |  |
|  | Lower-bound | 3.031 | 3.000 | 1.010 |  |  |

## spss output from our previous example

|  |  | Ty pe III <br> Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Source |  | Sphericity Assumed | 129.594 | 3 | 43.198 | 12.233 |
|  | Greenhouse-Geisser | 129.594 | 1.760 | 73.621 | 12.233 | .002 |
|  | Huy nh-Feldt | 129.594 | 3.000 | 43.198 | 12.233 | .002 |
|  | Lower-bound | 129.594 | 1.000 | 129.594 | 12.233 | .040 |
|  | Error(BLOCK) | Sphericity Assumed | 31.781 | 9 | 3.531 |  |
|  | Greenhouse-Geisser | 31.781 | 5.281 | 6.018 |  |  |
|  | Huy nh-Feldt | 31.781 | 9.000 | 3.531 |  |  |
|  | Lower-bound | 31.781 | 3.000 | 10.594 |  |  |

sphericity assumed - i.e., no adjustment
this is what we based our degrees of freedom on before,
i.e., $b-1=4-1=3,(n-1)(b-1)=3 \times 3=9 \rightarrow 3,9$

## spss output from our previous example

|  |  | Ty pe III <br> Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Source |  | Sphericity Assumed | 129.594 | 3 | 43.198 | 12.233 |
| BLOCK | Greenhouse-Geisser | 129.594 | 1.760 | 73.621 | 12.233 | .002 |
|  | Huy nh-Feldt | 129.594 | 3.000 | 43.198 | 12.233 | .002 |
|  | Lower-bound | 129.594 | 1.000 | 129.594 | 12.233 | .040 |
| Error(BLOCK) | Sphericity Assumed | 31.781 | 9 | 3.531 |  |  |
|  | Greenhouse-Geisser | 31.781 | 5.281 | 6.018 |  |  |
|  | Huy nh-Feldt | 31.781 | 9.000 | 3.531 |  |  |
|  | Lower-bound | 31.781 | 3.000 | 10.594 |  |  |
|  |  |  |  |  |  |  |

Lower-bound - for worst case heterogeneity
i.e., $d f=1, \mathrm{~b}-1$ - here we come close to concluding nonsignificance (which would probably be a type-2 error)

## spss output from our previous example

| Source |  | Ty pe III Sum of Squares | df | Mean Square | F | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLOCK | Sphericity Assumed | 129.594 | 3 | 43.198 | 12.233 | . 002 |
|  | Greenhouse-Geisser | 129.594 | 1.760 | 73.621 | 12.233 | . 011 |
|  | Huy nh-Feldt | 129.594 | 3.000 | 43.198 | 12.233 | . 002 |
|  | Lower-bound | 129.594 | 1.000 | 129.594 | 12.233 | . 040 |
| Error(BLOCK) | Sphericity Assumed | 31.781 | 9 | 3.531 |  |  |
|  | Greenhouse-Geisser | 31.781 | 5.281 | 6.018 |  |  |
|  | Huy nh-Feldt | 31.781 | 9.000 | 3.531 |  |  |
|  | Lower-bound | 31.781 | 3.000 | 10.594 |  |  |

## Greenhouse-Geisser

 adjustment does not change significance of result
## spss output from our previous example

|  |  | Ty pe III <br> Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Source |  | Sphericity Assumed | 129.594 | 3 | 43.198 | 12.233 |
|  | Greenhouse-Geisser | 129.594 | 1.760 | 73.621 | 12.233 | .002 |
|  | Huy nh-Feldt | 129.594 | 3.000 | 43.198 | 12.233 | .002 |
|  | Lower-bound | 129.594 | 1.000 | 129.594 | 12.233 | .040 |
| Error(BLOCK) | Sphericity Assumed | 31.781 | 9 | 3.531 |  |  |
|  | Greenhouse-Geisser | 31.781 | 5.281 | 6.018 |  |  |
|  | Huy nh-Feldt | 31.781 | 9.000 | 3.531 |  |  |
|  | Lower-bound | 31.781 | 3.000 | 10.594 |  |  |

Huynh-Feldt - adjusts GG
no different to 'sphericity assumed' - indicates that $\varepsilon>1$

## Writing up...

Changes in participants' learning with practice and with or without reinforcement were explored in a 2 [phase] x 4 [Block] repeated measures ANOVA. In these analyses, the Huynh-Feldt correction was applied to the degrees of freedom, however the full degrees of freedom are reported here. Contrary to predictions, the interaction was not significant, $F(3,9)=3.309, \mathrm{p}=.159$, eta2 = ?? However, as hypothesised, participants learned more in the phase with reinforcement ( $M=42.5$; $S D=$ ??) than in the phase without ( $M=27.25$; $S D=$ ??), $F(1,3)=59.70$, $p=.005$, eta2 $=$ ??. A main effect of Block, $F(3,9)=$ $12.23, p=.002$, eta2 = ??, was followed up with a series of contrasts. These revealed that ...

## multivariate approach

- multivariate analysis of variance (manova)
- creates a linear composite of multiple DVs
- In MANOVA approach to repeated measures designs, our repeated measures variable is treated as multiple DVs and combined / weighted to maximise the difference between levels of other variables (similar to the approach regression uses to combined multiple predictors)
- multivariate tests - Pillai's Trace, Hotelling's Trace, Wilk's Lambda, Roy's Largest Root
- does not require restrictive assumptions
- more complex and less powerful


## multivariate approach

## Multi variate Tests

| Effect |  | Value | F | Hypothesis df | Error df | Sig. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PHASE | Pillai's Trace | .952 | $59.695^{\mathrm{a}}$ | 1.000 | 3.000 | .005 |
|  | Wilks' Lambda | .048 | $59.695^{\mathrm{a}}$ | 1.000 | 3.000 | .005 |
|  | Hotelling's Trace | 19.898 | $59.695^{\mathrm{a}}$ | 1.000 | 3.000 | .005 |
|  | Roy 's Largest Root | 19.898 | $59.695^{\mathrm{a}}$ | 1.000 | 3.000 | .005 |
| BLOCK | Pillai's Trace | .992 | $43.017^{\mathrm{a}}$ | 3.000 | 1.000 | .112 |
|  | Wilks' Lambda | .008 | $43.017^{\mathrm{a}}$ | 3.000 | 1.000 | .112 |
|  | Hotelling's Trace | 129.050 | $43.017^{\mathrm{a}}$ | 3.000 | 1.000 | .112 |
|  | Roy 's Largest Root | 129.050 | $43.017^{\mathrm{a}}$ | 3.000 | 1.000 | .112 |
| PHASE * BLOCK | Pillai's Trace | .990 | $102.333^{\mathrm{a}}$ | 2.000 | 2.000 | .010 |
|  | Wilks' Lambda | .010 | $102.333^{\mathrm{a}}$ | 2.000 | 2.000 | .010 |
|  | Hotelling's Trace | 102.333 | $102.333^{\mathrm{a}}$ | 2.000 | 2.000 | .010 |
|  | Roy 's Largest Root | 102.333 | $102.333^{\mathrm{a}}$ | 2.000 | 2.000 | .010 |

a. Exact statistic
b.

Design: Intercept
Within Subjects Design: PHASE+BLOCK+PHASE*BLOCK

## Take home message

- What is MANOVA doing?
- Weighting the DV for each level of the repeated measures IV with coefficients (like what happens to scores for each IV in multiple regression) to create a predicted DV score that maximises differences across the levels of the IV
- Problem: Instead of adapting model to observed DVs, selectively weight or discount DVs based on how they fit the model.
- Atheoretical, over-capitalises on chance
- Don't use MANOVA approach to repeated measures
- With repeated measures designs, report the mixed model Fs not the MANOVA statistics
- Usually report GG Fs to ensure adjustment for sphericity violations which are common (regardless of Mauchley's test, which is too conservative and may not be sig. even when there are large violations)
- Personally I always use the GG or HF adjustment (HF can be more liberal) but report full df - this is common


## pros and cons

## advantages of within-subjects designs:

- more efficient
$-n$ Ss in $j$ treatments generate $n j$ data points
- simplifies procedure
- more sensitive
- estimate individual differences (SSsubjects) and remove from error term


## pros and cons

## disadvantages of within-subjects designs:

- restrictive statistical assumptions
- sequencing effects:
- learning, practice - improved later regardless of manipulation
- Fatigue - deteriorating later regardless of manipulation
- Habituation - insensitivity to later manipulations
- Sensitisation - become more responsive to later manipulations
- Contrast - previous treatment sets standard to which react
- Adaptation - adjustment to previous manipulations changes reaction to later
- Direct carry-over - learn something in previous that alters later
- Etc!
- An essential methodological practice in RM designs is to counterbalance to reduce sequencing effects
- i.e., half participants receive order A1 then A2; half receive A2 then A1
- But can still get treatment x order interactions


## most important points

- in within subjects anova, the error term used for ANY effect is equal to the interaction between that effect and the effect of subjects (a random factor)
- this applies to:
- main effects
- follow-up (main) comparisons
- interactions
- simple effects
- follow-up (simple) comparisons
- due to problems causes by lack of compound symmetry/sphericity, adjustments (such as GreenhouseGeisser adjustment) to our degrees of freedom are needed -- unless we used the manova approach, which we shouldn't, because it is inferior


## In class next week: <br> - Mixed ANOVA

## In the tutes:

- This week: Within-subjects and mixed designs
- Next week: Consult for A2


## Readings :

- Howell
- chapter 14
- Field
- Chapter 11

