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psyc3010 lecture 10

Mediation in MR

One and two-way within subjects anova

Before the break: moderated multiple regression

next week: mixed anova
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two weeks ago  this week

 Before the break we looked at how to test 
interactions in multiple regression – and saw 
that it achieved a similar thing to factorial anova.

 this week we go back to anova to look at within 
subjects designs
– One-way

– Two-way

 But before that, the grooviness of mediation
in MR!
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hierarchical models are used to:

 control for nuisance variable(s)

 answer theoretical questions about the relative 

contribution of sets of variables

 test moderated relationships (interactions)

Ŷ = b1X1 + b2X2 + b3X1X2 + a

 test for curvilinear relationships

Ŷ= b1X + b2X
2 + a

 test categorical variables with >2 levels

 test hypothesized causal order:

– Mediation (also via path analysis, structural equation 

modelling, etc. – in later courses!)
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what mediation means

 so far, we‟ve considered direct relationships between 
predictors and a criterion

e.g., more study time  higher exam mark

 sometimes, these relationships don‟t say much about 
underlying processes or mechanisms

 why does increased study time improve exam marks?

 a third variable, or mediator, may explain or account for the 
relationship between an IV and a DV

e.g., study time  retention of material  exam mark

 thus, the original predictor has an indirect relationship with 
the criterion
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mediation:

IV causes DV indirectly through mediator

1)  IV is related to („causes‟) mediator (path a)

2)  IV is related to DV (path b)

3)  mediator is related to DV (path c)

4)  IV is no longer related to DV when 

effect of mediator is controlled for   (path b.c)

mediator

independent

variable

dependent

variable

A C

B
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testing and reporting mediation 
1. IV is related to mediator (path a)

• Conduct regression of mediator on IV.  Report sig R2 and b or beta.

2. IV is related to DV (path b)

• Conduct HMR regressing DV on IV alone in block 1.  Report sig R2 and 

b or beta.

3. mediator is related to DV (path c)

4. when paths a and c are controlled, path b is no longer significant

• Add mediator in Block 2.  R2 change need not increase significantly – if 

coefficient for mediator is sig, condition (ii) is met.  If IV coefficient in 

block 2 is no longer significant, condition (iv) is met.  Report sig coeff for 

mediator and IV ns in this block and conclude, since all 4 conditions are 

met, that the effect of the IV on the DV is fully mediated by the mediator.

• Often in write-up you would also present a figure, as on previous slide

• Also need to conduct “Sobel test” to see if mediation is reliable – see 
http://www.people.ku.edu/~preacher/sobel/sobel.htm if interested.

http://www.people.ku.edu/~preacher/sobel/sobel.htm
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moderation vs mediation
 moderation and mediation are two widely confused 

terms
– in moderation: 1. The direct X-> Y relationship is the focus.  At 

low Z, the X->Y relationship is stronger, weaker, or reversed 
compared to the X->Y relationship at high Z.  I.e., X & Z interact.  
2. There is no “because”.   3. Moderator could be (and often is) 
uncorrelated with IV.  E.g., Exercise interacts with (weakens 
effect of) life hassles -> lower well-being.

– in mediation, 1. The indirect relationship of X -> Y via Z is the 
focus. 2. X causes Y because X causes Z which in turn causes 
Y:  XZY.  3. The mediator is associated with the IV 
(positively or negatively).  E.g., Exercise -> lower subjective 
stress -> well-being.

Y

Z

X Y Z X
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anova – a second look

 between-subjects designs
– each person serves in only one treatment/cell

– we then assume that any difference between them is due to our 
experimental manipulation (or intrinsic features of the grouping 
variable, e.g., gender)

– Within-cell variability is residual error

 within-subjects (repeated-measures) designs
– what if each subject served in each treatment?

– violates the assumption of independence in factorial ANOVA 
because scores for the participant are correlated across 
conditions

– but we can calculate and remove any variance due to 
dependence

– thus, we can reduce our error term and increase power 
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an illustration

treatment

subject          1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

treatment means don‟t differ by 

much – far more variability within 

each group than between



11

an illustration

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

most of this within-group variance is caused by the fact that 

some subjects learn quickly, and some learn slowly – i.e., 

people are different

In between-subjects design, all within-group variance is error, 

whereas repeated measures design remove individual 

difference variation from the error term.
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an illustration

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

solution:  firstly remove the between-subjects 

variance (i.e., account for individual differences) 

and then compare our treatment means
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Understanding RM versus BS 

designs
 In between subjects, assign people 

randomly to j conditions

– Total Variance = Between group + within 
group

• Treatment effect = between group variance

• Error = within group variance

 No subject variability because each 
participant has only 1 data point (no 
variance within individual)
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between-groups variance within-groups variance

total variation

1-way between-subjects anova:

residual/error

any individual differences 

within groups are considered 

„error‟
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Understanding RM designs
 In fully within subjects design, people are tested 

in each of j conditions 

 “subject” factor is crossed with IV (e.g., factor A)

 End up with A x S design with only 1 observation 
per cell

 No within-cell variance – now a cell is one 
observation (for person i in condition j)

 So what is error?
– Interaction of A x S – i.e., the changes (inconsistency) 

in the effects of A across subjects
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A x S design

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

Overall, treatment effect for 1 = 16 – 18.67 (-2.67)

treatment effect for 2 = 19-18.67 (+0.33)

treatment effect for 3 = 21 – 18.67 (+2.33)
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A x S design

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

For S1, treatment effect for 1 = 2 – 4.33 (-2.33)

treatment effect for 2 = 4 – 4.33 (-0.33)

treatment effect for 3 = 7 – 4.33 (+2.67)
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A x S design

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

For S2, treatment effect for 1 = 10 – 11.67 (-1.67)

treatment effect for 2 = 12-11.67 (+0.33)

treatment effect for 3 = 13-11.67 (+1.33)
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A x S design

treatment

subject 1 2  3 mean

1 2 4 7  4.33

2 10 12 13 11.67

3 22 29 30 27.00

4 30 31 34 31.67

mean 16 19 21 18.67

For S3, treatment effect for 1 = 22 – 27 (-5)

treatment effect for 2 = 29 – 27 (+2)

treatment effect for 3 = 30 – 27 (+3)
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between-subjects 

variance
within-subjects variance

1-way within-subjects anova:

error/residual 

[interaction s x tr]
between-treatments

any individual differences are 

removed first

total variation
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Within-subjects design
 Total Variance = Between subjects + within 

subjects

Between subjects variance due to individual 
differences is partitioned out of error (and 
treatment)!
– Within subjects = between treatment [treatment 

effect] + treatment x subject interaction [residual 
error – i.e., inconsistencies in the treatment effect]

– F test = TR / TR x S

 Acknowledges reality that variability within 
conditions/groups and between conditions/groups are 
both influenced by subject factor [people doing study]
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the conceptual model

Xij =   +  πi + j +  eij
for i cases and j treatments:

Xij, any DV score is a combination of:

 the grand mean,

πi variation due to the i-th person (i - )

j  variation due to the j-th treatment (j - )

eij  error - variation associated with the i-th cases in 

the j-th treatment – error = πij (plus chance)
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partitioning the variance

error (TRxS)

treatment

subjects
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worked example

basic learning study
 1-way within-subjects design (n=5)

 IV: block

– 40 trials through whole experiment

– want to compare over 4 blocks of 10 to see if learning has 

occurred

 DV = number of correct responses per block
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correct trials over 4 blocks of 10

block 1 block2 block3 block 4 subj total

subject 1 4 3 6 5 18

subject 2 4 4 7 8 23

subject 3 1 2 1 3 7

subject 4 1 4 5 5 15

subject 5 5 7 6 9 27

block total 15 20 25 30 90

block mean 3 4 5 6
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Definitional formulae

 Total variability – deviation of each observation from the 
grand mean:

 Variability due to factor – deviation of factor group 
means from grand mean:

 Variability due to subjects – deviation of each subject‟s 
mean from the grand mean:

 Error – changes (inconsistencies) in the effect of factor 
across subjects (TR x S interaction):

 
2

. ..A jSS n Y Y 

 
2

. ..A jSS n Y Y 

 
2

. ..S iSS a Y Y 

 
2

..T ijSS Y Y 

AxS T A SSS SS SS SS   
2

. . ..AxS i jSS Y Y Y Y    or
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computations
X2 =   504              
 

(X)2

N    =   902 / 20 = 405
 

 

SStotal  =  X2 – 
(X)2

N     =  504 – 405 = 99 

 

SSSs =  
b

T
2

S
– 

(X)2

N     = 182 + 232 + 72 + 152 + 272 / 4 – 405 = 59 

 

SSTR =  
n

T j
2

– 
(X)2

N     = 152 + 202 + 252 + 302 / 5 – 405 = 25 

 

SSerror  =  SStotal – SSS - SSTR  = 99 – 59 – 25  = 15 
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degrees of freedom
 
dftotal = nj-1 = N-1 = 19 
 
dfs = n-1 = 4 

 

dftr = j–1 = 3 

 

dferror = (n-1)(j-1) = 12 

error df is different from 

between-subjects anova 

– because error is now 

interaction of subject 

factor x treatment factor

Big N = Number of observations

number of subjects * number of conditions
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the summary table

MSS = estimate of variance in DV attributable to INDIVIDUAL DIFFERENCES

(averaged over treatment levels) – but ignore this & don’t report in write-up

MSTR = estimate of variance in DV attributable to TREATMENT

(averaged over subjects)

MSError = RESIDUAL: estimate of variance in DV not attributable to S or TR

(interaction - the change in the treatment effect across subjects = error)

Source SS df MS F

Between subjects (S) 59 4 14.75

Treatment (TR) 25 3 8.33 6.66*

Error 15 12 1.25

Total 99 19

* p <.05 F crit (3,12) = 3.49
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assuming the data was obtained from a 

between-subjects design . . . 

Source SS df MS F

Treatment (TR) 25 3 8.33 1.80

Error 74 16 4.63

Total 99 19

F crit (3,16) = 3.24

in between-subjects designs, individual differences are 

inseparable from error, hence contribute to the error term

in within-subjects designs it is possible to partial out (i.e., 

remove) individual differences from the error term

smaller error term  greater POWER 
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a note on error terms…

 hand calculations in within-subjects anova 

are no different to those in between-

subjects anova

– only the error term (and df) changes

 in 1-way within-subjects the error term 

(and df) is the treatment x subjects 

interaction

– MSerror = MSTRxS
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following up the main effect of treatment . . 

.

in between-subjects anova, MSerror is the term we would 

use to test any effect, including simple comparisons 

[error = differences between subjects – expect within-cell 

variance is the same across conditions]

but within-subjects ANOVA we partition out and ignore the 

main effect of subjects and compute an error term estimating 

inconsistency as subjects change over WS levels

Source SS df MS F

Treatment (TR) 25 3 8.33 6.66*

Error 15 12 1.25

Total 40 19

* p <.05 F crit (3,12) = 3.49
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separate error terms: 
following-up main effects

– We expect inconsistency in TR effect x 
subjects so in simple comparisons use only 
data for conditions involved in comparison & 
calculate separate error terms each time

B2 vs B3

block 1 block2 block3 block 4 subj total

subject 1 3 6 9

subject 2 4 7 11

subject 3 2 1 3

subject 4 4 5 9

subject 5 7 6 13

block total 20 25 45

block mean 4 5
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separate error terms: 
following-up main effects

B1 vs B4

block 1 block2 block3 block 4 subj total

subject 1 4 5 9

subject 2 4 8 12

subject 3 1 3 4

subject 4 1 5 6

subject 5 5 9 14

block total 15 30 45

block mean 3 6

• We expect inconsistency in TR effect x subjects 

so in simple comparisons use only data for 

conditions involved in comparison & calculate 

separate error terms each time
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between-groups variance within-groups variance

total variation

Simple comparisons in 

between-subjects anova:

residual/error

Partition treatment variance to 

follow-up, but use same error 

term (within-cell variance) for 

main effect (treatment) test 

and for all follow-ups

Contrast 1

Contrast 2

Contrast 3
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within-subjectsbetween-subjects

Simple comparisons in RM 

designs:
total variation

between-treatments residuals

C1

C2

C3

C1xS

C2xS

C3xS

Partition treatment variance and residual 

variance for follow-ups.  Each contrast effect is 

tested against error term = C x S interaction
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calculations 
(contrast 1 only)

X2 =   241              
 

(X)2

N    =   452 / 10 = 202.5
 

 

SStotalcomp
  =  X2 – 

(X)2

N     =  241 – 202.5 = 38.5 

 

SSSscomp =  
j

TS
2

– 
(X)2

N     = 92 + 112 + 32 + 92 + 132 / 2 – 202.5 = 28 

 

SS
contrast =  

n

TJ
2

– 
(X)2

N     = 202 + 252 / 5 – 202.5 = 2.5 

 

SSTRcompxS  =  SStotal – SSS - SScontrast  = 38.5 – 28 – 2.5  = 8 
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alternatively, use the formula from the earlier anova 

lectures:  
 

2

j

2

a

nL




contrast
SS

 

where   L  =    jj
Xa    

 
                  = 4(1) + 5(-1) = -1 
 

SScontrast = 
2

)1(5 2
 

 

             = 2.5  

 

 

 

calculations 
(contrast 1 only)
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summary table

Source SS df MS F

B2 vs B3 2.5 1 2.5 1.25

Error 8 4 2

B1 vs B4 22.5 1 22.5 22.5*

Error 4 4 1

these are the SScontrasts we can 

calculate in the same way as in 

between-subjects anova

But SSSxL terms we calculate 

separately for each within-

subjects effect

df for comparison is same 

as usual (i.e., 1)

dferror = (n-1)(j-1)

= (5-1)(2-1)

= 4
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2-way within-subjects designs

 calculations are similar to a 2-way between-
subjects ANOVA
– main effects for A and B are tested, as well as a AxB 

interaction

– with a within-subjects design, each effect tested has a 
separate error term

– this error term simply corresponds to an interaction 
between the effect due to SUBJECTS, and the 
treatment effect

• main effect of A  error term is MSAxS

• main effect of B  error term is MSBxS

• AxB interaction  error term is MSABxS



43

between-groups variance within-groups variance

total variation

2-way between-subjects anova:

residual/error

Partition between-groups 

variance into A, B and AxB, but 

use same error term (within-

cell variance) for each test 

(and all follow-ups)

A

B

AB
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within-subjectsbetween-subjects

2-way within-subjects anova:

total variation

between-treatments residuals

A

B

A x B

AxS

BxS

AxBxS

Partition treatment variance and residual 

variance for each effect.  Each effect is tested 

against error term = effect x S interaction
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2-way within-subjects example

another learning study:  

 2 x 4 repeated-measures factorial design (n=4)

 first factor: phase
– phase 1: no reinforcement (100 trials)

– phase 2: reward for correct response (100 trials)

 second factor: block
– each phase split into four blocks of 25

– enables us to compare performance for trials later in 
each phase with trials early in each phase – thereby 
assessing learning

 DV = number of correct responses per block
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Phase x Block repeated measures design

[phase x block x subjects]

b1 b2 b3 b4 b1 b2 b3 b4

subject 1 3 4 3 7 5 6 7 11

subject 2 6 8 9 12 10 12 15 18

subject 3 7 13 11 11 10 15 14 15

subject 4 0 3 6 6 5 7 9 11

PBS Matrix

p1 p2

p1 p2

subject 1 17 29 46

subject 2 35 55 90

subject 3 42 54 96

subject 4 15 32 47

PS matrix

b1 b2 b3 b4

subject 1 8 10 10 18

subject 2 16 20 24 30

subject 3 17 28 25 26

subject 4 5 10 15 17

BS matrix

b1 b2 b3 b4

p1 16 28 29 36 109

p2 30 40 45 55 170

46 68 74 91 279

PB matrix
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X2 =   2995    
(X)2

N    =   2792 / 32 = 2432.53
 

SStotal  =  X2 – 
(X)2

N     =  2995 – 2432.53 = 562.47 

 

BETWEEN SUBJECTS EFFECT: 

SSS =  
pb

T
2

S – 
(X)2

N     = 462 + 902 + 962 + 472 / 8 – 2432.53 = 272.60 

 

WITHIN SUBJECTS EFFECTS: 

SSP =  
nb

TP
2

– 
(X)2

N     = 1092 + 1702 / 16 – 2432.53 = 116.28 

SSB =  
np

TB
2

– 
(X)2

N     = 462 + 682 + 742 + 912 / 8 – 2432.53  = 129.60 

SScellsPB =  
n

TPB
2

– 
(X)2

N     = 162 + 302 + 282 + 402 + 292 + 452 + 362 + 552 / 4 – 2432.53 

       = 249.22 

SSPB =  SScellsPB -  SSP -  SSB  =  249.22 – 116.28 – 129.60 = 3.34 

 
 

calculations . . . .
b1 b2 b3 b4

subject 1 8 10 10 18 46

subject 2 16 20 24 30 90

subject 3 17 28 25 26 96

subject 4 5 10 15 17 47

BS matrix
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X2 =   2995    
(X)2

N    =   2792 / 32 = 2432.53
 

SStotal  =  X2 – 
(X)2

N     =  2995 – 2432.53 = 562.47 

 

BETWEEN SUBJECTS EFFECT: 

SSS =  
pb

T
2

S – 
(X)2

N     = 462 + 902 + 962 + 472 / 8 – 2432.53 = 272.60 

 

WITHIN SUBJECTS EFFECTS: 

SSP =  
nb

TP
2

– 
(X)2

N     = 1092 + 1702 / 16 – 2432.53 = 116.28 

SSB =  
np

TB
2

– 
(X)2

N     = 462 + 682 + 742 + 912 / 8 – 2432.53  = 129.60 

SScellsPB =  
n

TPB
2

– 
(X)2

N     = 162 + 302 + 282 + 402 + 292 + 452 + 362 + 552 / 4 – 2432.53 

       = 249.22 

SSPB =  SScellsPB -  SSP -  SSB  =  249.22 – 116.28 – 129.60 = 3.34 

 
 

calculations . . . .
p1 p2

subject 1 17 29 46

subject 2 35 55 90

subject 3 42 54 96

subject 4 15 32 47

PS matrix
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X2 =   2995    
(X)2

N    =   2792 / 32 = 2432.53
 

SStotal  =  X2 – 
(X)2

N     =  2995 – 2432.53 = 562.47 

 

BETWEEN SUBJECTS EFFECT: 

SSS =  
pb

T
2

S – 
(X)2

N     = 462 + 902 + 962 + 472 / 8 – 2432.53 = 272.60 

 

WITHIN SUBJECTS EFFECTS: 

SSP =  
nb

TP
2

– 
(X)2

N     = 1092 + 1702 / 16 – 2432.53 = 116.28 

SSB =  
np

TB
2

– 
(X)2

N     = 462 + 682 + 742 + 912 / 8 – 2432.53  = 129.60 

SScellsPB =  
n

TPB
2

– 
(X)2

N     = 162 + 302 + 282 + 402 + 292 + 452 + 362 + 552 / 4 – 2432.53 

       = 249.22 

SSPB =  SScellsPB -  SSP -  SSB  =  249.22 – 116.28 – 129.60 = 3.34 

 
 

calculations . . . .
b1 b2 b3 b4

p1 16 28 29 36 109

p2 30 40 45 55 170

46 68 74 91 279

PB matrix
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ERROR TERM  (P): 

SScellsPxS =  
b

TPS
2

– N

X 2

= 172 + 352 + … + 542 + 322 / 4 – 2432.53 = 394.72 

SSPxS =  SScellsPxS -  SSP -  SSS  =  394.72 – 116.28 – 272.60 = 5.84 

 

ERROR TERM  (B): 

SScellsBxS =  
p

TBS
2

– N

X 2

= 82 + 162 + … + 262 + 172 / 2 – 2432.53 = 433.97 

SSBxS =  SScellsBxS -  SSB -  SSS  =  433.97 – 129.6 – 272.60 = 31.77 

 
ERROR TERM  (AB): 
 
SSPBxS =  SStotal – SSS – SSP – SSB –SSPB – SSPxS - SSBxS 

              = 562.47 – 272.60 – 116.28 – 129.60 – 3.34 – 5.84 – 31.77 = 3.04  
 

calculations . . . .
p1 p2

subject 1 17 29 46

subject 2 35 55 90

subject 3 42 54 96

subject 4 15 32 47

PS matrix

NB how unlike regular between subjects ANOVA need to calculate a new error term 

(factor x subject) for each F test

(you‟ll find SSP and SSS on previous slide)
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summary table . . .

Source SS df MS F

Between subjects 272.6 3 90.867

P 116.28 1 116.28 59.63*

PxS 5.84 3 1.95

B 129.6 3 43.20 12.24*

BxS 31.77 9 3.53

PB 3.34 3 1.11 3.26

PBxS 3.04 9 0.34

Critical F (1,3) = 10.13

Critical F 3,9) = 3.86
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following up main effects

 as with one-way repeated measures designs, use of 

error term for effect (e.g., MSBxS) is not appropriate for 

follow-up comparisons

 a separate error term must be calculated for each 

comparison undertaken(MSBCOMPxS) 

Source SS df MS F

B COMP 18.06 1 18.06 6.62

B COMPxS 8.19 3 2.73

Critical F (1,3) = 10.13
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following up interactions . . .

 again, separate error terms must be used 
for each effect tested

– simple effects
• error term is MS

A at B1xS

• the interaction between the A treatment and 
subjects, at B1

– simple comparisons

• error term is MS
ACOMP at B1xS

• interaction between the A treatment (only the data 

contributing to the comparison, ACOMP), and 

subjects, at B1
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2 approaches to within-subjects designs

 mixed-model approach
– what we have been doing with hand calculations

– treatment is a fixed factor, subjects is a random factor
• Fixed factor: You chose the levels of the IV.

– You have sampled all the levels of the IV or

– You have selected particular levels based on a theoretical reason

• Random factor: The levels of the IV are chosen at random

• Random factors have different error terms: all ANOVA we have done 
to date has assumed the IVs are fixed.  For most of you, the subject 
factor is the only random factor you will ever meet (be grateful). 
You can read up on random factor ANOVA models in advanced 
textbooks if you need to (e.g., as a postgrad).

– powerful when assumptions are met 

– mathematically user-friendly 

• just like a factorial anova

– restrictive assumptions, but adjustments available if they are 
violated

 multivariate approach…which we will discuss briefly later
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assumptions of mixed-model approach

 not dissimilar to between-subjects 
assumptions:
1. sample is randomly drawn from population

2. DV scores are normally distributed in the 
population 

3. compound symmetry

• homogeneity of variances in levels of 
repeated-measures factor

• homogeneity of covariances
(equal correlations/covariances between 
pairs of levels) 
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compound symmetry

 the variance-covariance matrix:

T1 T2 T3

T1 158.92 163.33 163.00

 = T2 163.33 172.67 170.67

T3 163.00 170.67 170.00
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compound symmetry

 the variance-covariance matrix:

T1 T2 T3

T1 158.92 163.33 163.00

 = T2 163.33 172.67 170.67

T3 163.00 170.67 170.00

compound symmetry requires that variances are 
roughly equal (homogeneity of variance)
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compound symmetry

 the variance-covariance matrix:

T1 T2 T3

T1 158.92 163.33 163.00

 = T2 163.33 172.67 170.67

T3 163.00 170.67 170.00

compound symmetry requires that covariances are 
roughly equal (homogeneity of covariance) 
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Mauchly‟s test of sphericity

 compound symmetry is a very restrictive 
assumption – often violated

 sphericity is a more broad and less restrictive 
assumption

 SPSS – Mauchley’s test of sphericity
– examines overall structure of covariance matrix 

– determines whether values in the main diagonal (variances) are 
roughly equal, and if values in the off-diagonal are roughly equal 
(covariances)

– evaluated as 2 – if significant, sphericity assumption is violated

– not a robust test AT ALL – very commonly fail to find 
Mauchley’s sphericity is sig even when violations of 
sphericity are present in the data



62

violations of sphericity
when sphericity doesn‟t matter

 in between-subjects designs, because treatments are 
unrelated (different subjects in different treatments)
– the assumption of homogeneity of variance still matters though 

 when within-subject factors have two levels, because 
only one estimate of covariance can be computed

when it does matter

 in all other within-subjects designs

 when the sphericity assumption is violated, F-ratios are 
positively biased
– critical values of F [based on df  a – 1, (a – 1)(n – 1)] are too small

– therefore, probability of type-1 error increases
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adjustments to degrees of freedom

 Best to assume that have a problem and make 

adjustment proactively – change critical F by 

adjusting degrees of freedom

 epsilon () adjustments

– epsilon is simply a value by which the degrees of 

freedom for the test of F-ratio is multiplied

– equal to 1 when sphericity assumption is met (hence 

no adjustment), and < 1 when assumption is violated

– the lower the epsilon value (further from 1), the more 

conservative the test becomes
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different types of epsilon

 Lower-bound epsilon
– Act as if have only 2 treatment levels with maximal heterogeneity

– used for conditions of maximal heterogeneity, or worst-case violation 
of sphericity  often too conservative

 Greenhouse-Geisser epsilon

– size of  depends on degree to which sphericity is violated

– 1    1/(k-1) : varies between 1 (sphericity intact) and lower-bound 
epsilon (worst-case violation)

– generally recommended – not too stringent, not too lax
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different types of epsilon

 Huynh-Feldt epsilon
– an adjustment applied to the GG-epsilon

– often results in epsilon exceeding 1, in which case it is set to 1 

– used when “true value” of epsilon is believed to be  .75
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spss output from our previous example

Mauchly's Test of Sphericityb

Measure: MEASURE_1

1.000 .000 0 . 1.000 1.000 1.000

.111 3.785 5 .634 .587 1.000 .333

.000 . 5 . .348 .370 .333

Within Subjects Ef fect

PHASE

BLOCK

PHASE * BLOCK

Mauchly 's  W

Approx.

Chi-Square df Sig.

Greenhous

e-Geisser Huy nh-Feldt Lower-bound

Epsilon
a

Tests the null hy pothes is  that the error covariance matrix  of  the orthonormalized transf ormed dependent v ariables is

proportional to an identity  matrix.

May  be used to adjust the degrees of  f reedom f or the av eraged tests of  signif icance. Corrected tests are display ed in the

Tests of  Within-Subjects Ef fects table.

a.  

Des ign: Intercept 

Within Subjects Design: PHASE+BLOCK+PHASE*BLOCK

b. 

no test for effects involving phase – only 2 levels

test for block is not significant (sphericity not violated) but 

we aren’t going to trust it!
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spss output from our previous example

Mauchly's Test of Sphericityb

Measure: MEASURE_1

1.000 .000 0 . 1.000 1.000 1.000

.111 3.785 5 .634 .587 1.000 .333

.000 . 5 . .348 .370 .333

Within Subjects Ef fect

PHASE

BLOCK

PHASE * BLOCK

Mauchly 's  W

Approx.

Chi-Square df Sig.

Greenhous

e-Geisser Huy nh-Feldt Lower-bound

Epsilon
a

Tests the null hy pothes is  that the error covariance matrix  of  the orthonormalized transf ormed dependent v ariables is

proportional to an identity  matrix.

May  be used to adjust the degrees of  f reedom f or the av eraged tests of  signif icance. Corrected tests are display ed in the

Tests of  Within-Subjects Ef fects table.

a.  

Des ign: Intercept 

Within Subjects Design: PHASE+BLOCK+PHASE*BLOCK

b. 

compare the epsilon values…
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Measure: MEASURE_1

116.281 1 116.281 59.695 .005

116.281 1.000 116.281 59.695 .005

116.281 1.000 116.281 59.695 .005

116.281 1.000 116.281 59.695 .005

5.844 3 1.948

5.844 3.000 1.948

5.844 3.000 1.948

5.844 3.000 1.948

129.594 3 43.198 12.233 .002

129.594 1.760 73.621 12.233 .011

129.594 3.000 43.198 12.233 .002

129.594 1.000 129.594 12.233 .040

31.781 9 3.531

31.781 5.281 6.018

31.781 9.000 3.531

31.781 3.000 10.594

3.344 3 1.115 3.309 .071

3.344 1.043 3.207 3.309 .163

3.344 1.109 3.016 3.309 .159

3.344 1.000 3.344 3.309 .166

3.031 9 .337

3.031 3.128 .969

3.031 3.326 .911

3.031 3.000 1.010

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Source
PHASE

Error(PHASE)

BLOCK

Error(BLOCK)

PHASE * BLOCK

Error(PHASE*BLOCK)

Ty pe III  Sum

of  Squares df Mean Square F Sig.
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spss output from our previous example

Measure: MEASURE_1

129.594 3 43.198 12.233 .002

129.594 1.760 73.621 12.233 .011

129.594 3.000 43.198 12.233 .002

129.594 1.000 129.594 12.233 .040

31.781 9 3.531

31.781 5.281 6.018

31.781 9.000 3.531

31.781 3.000 10.594

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Source

BLOCK

Error(BLOCK)

Ty pe III

Sum of

Squares df Mean Square F Sig.

sphericity assumed – i.e., no adjustment

this is what we based our degrees of freedom on before, 

i.e., b-1 = 4-1 = 3, (n-1)(b-1) = 3 x 3 = 9   3,9
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spss output from our previous example

Measure: MEASURE_1

129.594 3 43.198 12.233 .002

129.594 1.760 73.621 12.233 .011

129.594 3.000 43.198 12.233 .002

129.594 1.000 129.594 12.233 .040

31.781 9 3.531

31.781 5.281 6.018

31.781 9.000 3.531

31.781 3.000 10.594

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Source

BLOCK

Error(BLOCK)

Ty pe III

Sum of

Squares df Mean Square F Sig.

Lower-bound – for worst case heterogeneity

i.e., df = 1, b-1 – here we come close to concluding non-

significance (which would probably be a type-2 error)
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spss output from our previous example

Measure: MEASURE_1

129.594 3 43.198 12.233 .002

129.594 1.760 73.621 12.233 .011

129.594 3.000 43.198 12.233 .002

129.594 1.000 129.594 12.233 .040

31.781 9 3.531

31.781 5.281 6.018

31.781 9.000 3.531

31.781 3.000 10.594

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Source

BLOCK

Error(BLOCK)

Ty pe III

Sum of

Squares df Mean Square F Sig.

Greenhouse-Geisser

adjustment does not change significance of result  
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spss output from our previous example

Measure: MEASURE_1

129.594 3 43.198 12.233 .002

129.594 1.760 73.621 12.233 .011

129.594 3.000 43.198 12.233 .002

129.594 1.000 129.594 12.233 .040

31.781 9 3.531

31.781 5.281 6.018

31.781 9.000 3.531

31.781 3.000 10.594

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huy nh-Feldt

Lower-bound

Source

BLOCK

Error(BLOCK)

Ty pe III

Sum of

Squares df Mean Square F Sig.

Huynh-Feldt – adjusts GG

no different to „sphericity assumed‟ – indicates that  > 1
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Changes in participants‟ learning with practice and with 
or without reinforcement were explored in a 2 [phase] x 4 
[Block] repeated measures ANOVA.  In these analyses, 
the Huynh-Feldt correction was applied to the degrees of 
freedom, however the full degrees of freedom are 
reported here. Contrary to predictions, the interaction 
was not significant, F(3,9) = 3.309, p = .159, eta2 = ??.  
However, as hypothesised, participants learned more in 
the phase with reinforcement (M = 42.5; SD = ??) than in 
the phase without (M = 27.25; SD = ??), F(1, 3) = 59.70, 
p = .005, eta2 = ??.  A main effect of Block, F(3,9) = 
12.23, p = .002, eta2 = ??, was followed up with a series 
of contrasts.  These revealed that … 

Writing up…
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multivariate approach

 multivariate analysis of variance (manova)

– creates a linear composite of multiple DVs

– In MANOVA approach to repeated measures 
designs, our repeated measures variable is treated 
as multiple DVs and combined / weighted to 
maximise the difference between levels of other 
variables (similar to the approach regression uses 
to combined multiple predictors)

• multivariate tests – Pillai’s Trace, Hotelling’s 
Trace, Wilk’s Lambda, Roy’s Largest Root

• does not require restrictive assumptions

– more complex and less powerful
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multivariate approach

Multivariate Testsb

.952 59.695a 1.000 3.000 .005

.048 59.695a 1.000 3.000 .005

19.898 59.695a 1.000 3.000 .005

19.898 59.695a 1.000 3.000 .005

.992 43.017a 3.000 1.000 .112

.008 43.017a 3.000 1.000 .112

129.050 43.017a 3.000 1.000 .112

129.050 43.017a 3.000 1.000 .112

.990 102.333a 2.000 2.000 .010

.010 102.333a 2.000 2.000 .010

102.333 102.333a 2.000 2.000 .010

102.333 102.333a 2.000 2.000 .010

Pillai's  Trace

Wilks' Lambda

Hotelling's Trace

Roy 's Largest Root

Pillai's  Trace

Wilks' Lambda

Hotelling's Trace

Roy 's Largest Root

Pillai's  Trace

Wilks' Lambda

Hotelling's Trace

Roy 's Largest Root

Ef f ect

PHASE

BLOCK

PHASE * BLOCK

Value F Hy pothesis df Error df Sig.

Exact  statist ica.  

Design: Intercept 

Within Subjects Design:  PHASE+BLOCK+PHASE*BLOCK

b. 
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Take home message
 What is MANOVA doing?

– Weighting the DV for each level of the repeated measures IV with 
coefficients (like what happens to scores for each IV in multiple 
regression) to create a predicted DV score that maximises differences 
across the levels of the IV

– Problem: Instead of adapting model to observed DVs, selectively 
weight or discount DVs based on how they fit the model.

• Atheoretical, over-capitalises on chance

 Don‟t use MANOVA approach to repeated measures

 With repeated measures designs, report the mixed model Fs not the 
MANOVA statistics

 Usually report GG Fs to ensure adjustment for sphericity violations 
which are common (regardless of Mauchley‟s test, which is too 
conservative and may not be sig. even when there are large 
violations)

 Personally I always use the GG or HF adjustment (HF can be more 
liberal) but report full df – this is common
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pros and cons

advantages of within-subjects designs:

 more efficient

– n Ss in j treatments generate nj data points

– simplifies procedure

 more sensitive

– estimate individual differences (SSsubjects) 

and remove from error term
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pros and cons
disadvantages of within-subjects designs:

 restrictive statistical assumptions

 sequencing effects:
– learning, practice – improved later regardless of manipulation

– Fatigue – deteriorating later regardless of manipulation

– Habituation – insensitivity to later manipulations

– Sensitisation – become more responsive to later manipulations

– Contrast – previous treatment sets standard to which react

– Adaptation – adjustment  to previous manipulations changes 
reaction to later 

– Direct carry-over – learn something in previous that alters later

– Etc!

 An essential methodological practice in RM designs is to 
counterbalance to reduce sequencing effects

– i.e., half participants receive order A1 then A2; half 
receive A2 then A1

– But can still get treatment x order interactions
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most important points

 in within subjects anova, the error term used for ANY 
effect is equal to the interaction between that effect 
and the effect of subjects (a random factor)
– this applies to:

• main effects

– follow-up (main) comparisons

• interactions

– simple effects

follow-up (simple) comparisons

 due to problems causes by lack of compound 
symmetry/sphericity, adjustments (such as Greenhouse-
Geisser adjustment) to our degrees of freedom are 
needed -- unless we used the manova approach, which 
we shouldn‟t, because it is inferior
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In class next week:

 Mixed ANOVA

In the tutes:

 This week: Within-subjects and mixed designs

 Next week: Consult for A2

Readings :

 Howell
– chapter 14

 Field
– Chapter 11


