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psyc3010 lecture 8

standard and hierarchical multiple regression

last week: correlation and regression

Next week: moderated regression
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 last week we revised correlation & regression
and took a look at some of the underlying 
principles of these methods [partitioning 
variance into SS regression (Ŷ - Y) and SS 
residual (Y - Ŷ).]

 We extended these ideas to the multiple 
predictor case (multiple regression) and 
touched upon indices of predictor importance

 these week we go through two full examples of 
multiple regression
– standard regression

– heirarchical regression

last week  this week
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Indices of predictor importance:
 r [Pearson or zero-order correlation] – a scale free measure of 

association – the standardised covariance between two factors

 r2 [the coefficient of determination] – the proportion of variability in one 
factor (e.g., the DV) accounted for by another (e.g. an IV).

 b [unstandardised slope or unstandardised regression coefficient] – a 
scale dependent measure of association, the slope of the regression line –
the change in units of Y expected with a 1 unit increase in X

  [standardised slope or standardised regression coefficient] – a scale 
free measure of association, the slope of the regression line if all variables 
are standardised – the change in standard deviations in Y expected with a 
1 standard deviation increase in X, controlling for all other predictors.  = r 
in bivariate regression (when there is only one IV).

 pr2 [partial correlation squared] – a scale free measure of association 
controlling for other IVs -- the proportion of residual variance in the DV 
(after other IVs are controlled for) uniquely accounted for by the IV.

 sr2 [semi-partial correlation squared] – a scale free measure of 
association controlling for other IVs -- the proportion of total variance in 
the DV uniquely accounted for by the IV.



4

Comparing the different rs

 The zero-order (Pearson’s) correlation between IV 
and DV ignores extent to which IV is correlated with 
other IVs.

 The semi-partial correlation deals with unique effect of 
IV on total variance in DV – usually what we are 
interested in.
– Conceptually similar to eta squared

– Confusion alert: in SPSS the semi-partial r is called the part 
correlation.  No one else does this though.

 The partial correlation deals with unique effect of the IV 
on residual variance in DV.  More difficult to interpret –
most useful when other IVs = control variables.
– Conceptually similar to „partial eta squared‟

 Generally r > spr and pr > spr
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criterion

predictor1

bivariate vs multiple regression -

model coefficient of determination

predictor2

criterion

predictor

r2

R2
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the linear model – one predictor
(2D space)

predictor (X)

c
ri
te

ri
o
n
 (

Y
)

Ŷ = bX + a
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the linear model – two predictors 
(3D space)

c
ri

te
ri

o
n
 (

Y
)

Ŷ = b1X1 + b2X2 + a
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the linear model – 2 predictors

 criterion scores are predicted using the best 
linear combination of the predictors
– similar to the line-of-best-fit idea, but it becomes the 

plane-of-best-fit

– equation derived according to the least-squares 
criterion – such that (Y-Ŷ)2 is minimized

• b1 is the slope of the plane relative to the X1 axis, 

• b2 is the slope relative to the X2 axis, 

• a is the point where the plane intersects the Y axis (when X1

and X2 are equal to zero)

 the idea extends to 3+ predictors but becomes 
tricky to represent graphically (i.e., hyperspace)
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example

 new study...examine the amount of variance in 
academic achievement (GPA) accounted for 
by…
– Minutes spent studying per week (questionnaire measure)

– motivation (questionnaire measure)

– anxiety (questionnaire measure)

 can use multiple regression to asses how much 
variance the predictors explain as a set (R2 )

 can also assess the relative importance of each 
predictor (r, b, , pr2, sr2).
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data table

subject study motivation anxiety GPA

(X1) (X2) (X3) (Y)

1 104 12 1  5.5

2 109 13 9 5.7

3 123 9 2 5.5

4 94 15 11 5.3

5 114 15 2 6.1

6 91 7 9 4.9

7 100 5 1 4.5

…

29 107 10 6 5.9

30 119 8 2  6.0
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preliminary statistics

Mean SD N alpha

study time 97.967 8.915 30 .88

motivation 14.533 4.392 30 .75

anxiety 4.233 1.455 30 .85

GPA 5.551 2.163 30 .82

ST MOT ANX GPA

study time 1.00

motivation .313 1.00

anxiety .256 .536 1.00

GPA .637 .653 .505 1.00

Descriptive Statistics

Correlations



13

preliminary statistics

Mean SD N alpha

study time 97.967 8.915 30 .88

motivation 14.533 4.392 30 .75

anxiety 4.233 1.455 30 .85

GPA 5.551 2.163 30 .82

IQ MOT ANX GPA

IQ 1.00

motivation .313 1.00

anxiety .256 .536 1.00

GPA .637 .653 .505 1.00

Descriptive Statistics

Correlationsmeans and standard deviations are used to obtain 
regression estimates, and are reported as 

preliminary stats when one conducts MR.  They 
are needed to interpret coefficients, although 

descriptively they are not as critical in MR as they 
are for t-tests and anova
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preliminary statistics

Mean SD N alpha

IQ 97.967 8.915 30 .88

motivation 14.533 4.392 30 .75

anxiety 4.233 1.455 30 .85

GPA 5.551 2.163 30 .82

ST MOT ANX GPA

study time 1.00

motivation .313 1.00

anxiety .256 .536 1.00

GPA .637 .653 .505 1.00

Descriptive Statistics

Correlations

Cronbach’s  is an index of internal 
consistency (reliability) for a continuous 

scale

best to use scales with high reliability (
>.70) if available – less error variance
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preliminary statistics

Mean SD N alpha

IQ 97.967 8.915 30 .88

motivation 14.533 4.392 30 .75

anxiety 4.233 1.455 30 .85

GPA 75.533 15.163 30 .82

IQ MOT ANX GPA

IQ 1.00

motivation .313 1.00

anxiety .256 .536 1.00

GPA .637 .653 .505 1.00

Descriptive Statistics

Correlations

the correlation matrix, tells you the extent to 
which each predictor is related to the criterion 
(called validities), as well as intercorrelations 

among predictors (collinearities).  

to maximise R2 we want predictors that have high
validities and low collinearity
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principle of parsimony:

predictor1

predictor3

predictor2

criterion
R2

predictors are: 

-highly correlated 

with criterion

-have low(er) 

correlations with 

one another

-Good
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principle of parsimony:

predictor1

predictor3

predictor2

criterion

R2

predictors are: 

-highly correlated 

with criterion

-highly correlated 

with one another

-Bad.  Probably 

would delete some 

of the redundant 

IVs.
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regression 

solution
 calculation for multiple regression requires the solution of a set of 

parameters (one slope for each predictor – b values)

 E.g. with 2 IVs, the 2 slopes define the plane-of-best-fit that goes 
through the 3-dimensional space described by plotting the DV 
against each IVs

 Pick bs so that deviations of dots from the plane are minimized
– these weights are derived through matrix algebra  - beyond the scope 

of this course 

 understand how with one variable, we model Y hat with a line 
described by 2 parameters (bX + a); 

 with two, model Y hat as a plane described by 3 parameters 
(b1X1 + b2X2 + a)

 with p predictors, model Yhat as a p-dimensional hyperspace blob 
with p + 1 parameters (constant, and a slope for each IV).

 So Ŷ, the predicted value of Y, is modeled with a linear composite 
formed by multiplying each predictor by its regression weight / 
slope / coefficient (just like a linear contrast) and adding the 
constant:

Ŷ = .79ST + 1.45MOT + 1.68ANX – 95.02

 the criterion (GPA) is regressed on this linear composite

Ŷ = b1X1 + b2X2 + a
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the linear model – two predictors 
(3D space)

c
ri

te
ri

o
n
 (

Y
)

Ŷ = b1X1 + b2X2 + a
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Ŷ

the linear composite

Study

Anxiety

Motivation

criterion

Ŷ = .79IQ + 1.45MOT + 1.68ANX – 95.02
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the linear composite

criterion

Ŷ

…so we end up with two overlapping variables just like 

in bivariate regression (only one is blue and weird and wibbly, 

graphically symbolising that underlying the linear relationship 

between the DV and Y hat, the linear composite, is a 4-dimensional 

space defined by the 3 IVs and the DV)
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the model: R and  R2

 Despite the underlying complexity, the multiple 
correlation coefficient (R) is just a bivariate correlation 
between the criterion (GPA) and the best linear 

combination of the predictors (Ŷ)

 i.e., R2 = r2
YŶ 

where Ŷ = .79ST + 1.45MOT + 1.68ANX – 95.02

 accordingly, we can treat the model R exactly like r, ie:
i. calculate R adjusted:

ii. square R to obtain amount of variance accounted for in Y by 
our linear composite (Ŷ)

iii. test for statistical significance

2N

)1N)(R1(
1

2
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the model: R and  R2

 1. In this example, R = .81

– so R adj =

= .798

 2. R2 = .65 (.638 adjusted)

“…therefore, 65% of the variance in participants’ 

GPA was explained by the combination of their 

study time, motivation, and anxiety.” 

230

)130)(65.1(
1
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 3. The overall model (R2) is tested for significance –

– H0 – the relationship between the predictors (as a group) and 

the criterion is zero

– H1 – the relationship between the predictors (as a group) and 

the criterion is different from zero

the model: R and R2

23.16

)6518.1(3

6518.)1330(

)R1(p

R)1pN(
2

2











F

1p,p  Ndf

r N  2

1 r2
t =

Reminder of t-test for r



26

F = df = p, N – p – 1

=

= variance accounted for / df

variance not accounted for (error) / df

= MS REGRESSION

MS RESIDUAL

Test of R2

(analysis of regression)

)1(

)1(
2

2

Rp

RpN





)1/()1(

/
2

2

 pNR

pR

What we know 

(can account for)

What we don’t know 

(can’t account for)
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 Or perform same test via analysis of regression:

SSY = SSRegression + SSResidual

SSY     =  (Y-Y)2  = (5.5 - 5.551)2 + (5.7 - 5.551)2 …

= 6667.46

SSRegression  =  (Ŷ - Y)2  = (6.22 – 5.551)2 + …

= 4346.03

SSResidual  =  (Y - Ŷ)2  

= SSY - SSRegression = 6667.46 - 4346.03 

= 2321.43

the model: R and  R2
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Summary Table for Analysis of Regression:

the model: R and  R2

1p,p  Ndf

Model

Sums of 

Squares df

Mean 

Square F sig

Regression 4346.03 3 1448.68 16.23 .000

Residual 2321.43 26 89.29

Total 6667.46 29

The model including study time, motivation, and 

anxiety accounted for significant variation in 

participants’ GPA, F(3, 26) = 16.23, p < .001, R2 = .65. 
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individual predictors

 we already have our bivariate correlations (r) 

between each predictor and the criterion.  In 

addition, SPSS gives us:

– b – (unstandardised) partial regression coefficient

–  - standardised partial regression coefficient

– pr – partial correlation coefficient

– sr – semi-partial correlation coefficient

(as the calculations for these are all matrix algebra we 

will bypass that….)
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criterion

Predictor p

predictor2

pr2

pr – partial correlation coefficient

pr is the correlation between predictor p 

and the criterion, with the variance shared 

with the other predictors partialled out

Can write r01.2 [partial r between 0 and 1 

excluding shared variance with 2]

pr2 indicates the proportion of residual 

variance in the criterion (DV variance left 

unexplained by the other predictors) that is 

explained by predictor p

prST = .581; prIQ
2 = 33.7%

prMOT = .562 ; prMOT
2 = 31.5%

prANX = .293; prANX
2 = 8.5%.
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predictor2

sr – semi-partial correlation coefficient

sr2

predictorp

criterion

sr is the correlation between predictor p

and the criterion, with the variance shared 

with the other predictors partialled out 

of predictor p

Can write r0(1.2) [partial r between 0 and (1 

excluding 2)]

sr2 indicates the unique contribution to the 

total variance in the DV explained by 

predictor p

srST = .469; srIQ
2 = 21.9%

srMOT = .411; srMOT
2 = 16.9%

srANX = .224; srANX
2 = 5%

shared variance ≈ 21% (R2 - ∑sr2, 65-44%)
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Ŷ = b1X1+ b2X2 + a

Ŷ = bY1.2X1 + bY2. 1X2 + a

bY1.2 first-order coefficient 

bY1.2 ≠ bY1 unless r12 = 0 

Ŷ = b1X1 + b2X2 + b3X3 + a

Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3 + a

bY1.23 second-order coefficient

Zero-order coefficient – doesn‟t

take other IVs into account

First-order coefficient – takes

1 other IV into account

Takes 2 other IVs into account

All reported coefficients (e.g. in SPSS) are highest order coefficients
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tests of bs:

test importance of the predictor in the context of all 
the other predictors

divide b by its standard error. df = N – p – 1

tb1 =   .789247 = 3.785*  ST

.208497   

tb2 =  1.453540 = 3.000*  MOT

.484508

tb3 =  1.678871 = 1.168   ANX

1.437221
 ST contributes significantly to prediction of DV, after controlling for the other 

predictors, and so does MOT

 though a valid zero-order predictor of DV, anx does not contribute to the 
prediction, given ST and MOT 
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Importance of predictors

can't rely on rs (zero-order), because the 
predictors are interrelated

(predictor with a significant r may contribute nothing, once others are 
included; e.g., ANX)

partial regression coefficient (bs):
adjusted for correlation of the predictor with the other 

predictors

but

can't use relative magnitude of bs, because scale-
bound

(importance of a given b depends on unit and variability of measure)
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Standardized regression 

coefficients (β s):

rough estimate of relative contribution of 

predictors, because use same metric

can compare β s within a regression 

equation (but not necessarily across 

groups & settings – in that standard 

deviation of variables change)
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β 1 = b1 .

when IVs are not correlated:

β = r

when IVs are correlated:

β s (magnitudes, signs) are affected by pattern of 
correlations among the predictors

ZY = β1Z1 + β2Z2 + β3Z3 +... + βpZp

ZY = .46 ZST + .42 ZMOT + .16 ZANX

a one-SD increase in ST (with all other variables held 
constant) is associated with an increase of .46 SDs in DV

Standardized regression 

coefficients:

Ys

s1
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 standard

– all predictors are entered simultaneously

– each predictor is evaluated in terms of what it adds 

to prediction beyond that afforded by all others

– most appropriate when IVs are not intercorrelated

 hierarchical 

– predictors are entered sequentially in a pre-

specified order

– each predictor is evaluated in terms of what it adds 

to prediction at its point of entry

– order of prediction based upon logic/theory

standard vs hierarchical regression
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standard vs hierarchical 

multiple regression

criterion

predictor1

predictor2model 

predictor1

predictor2

criterion

standard multiple regression:

•Model R2 assessed in 1 step

•b for each IV based on unique contribution only

IV1

IV2
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standard vs hierarchical 

multiple regression

predictor2

predictor1

predictor2

criterion

step 1

step 

2

IV1 in 

block1

IV2

hierarchical multiple regression:

• Model R2 assessed in > 1 step

• Each step (“block”) add more IVs

• b for first IV based on total contribution; later IV on unique contribution

predictor1

predictor2

criterion

step 1

step 

2

step 1

step 

2
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some rationales for order of entry:
1. to partial out the effect of a control variable not of interest to 

the study

– exactly the same idea as ancova – your „covariate‟ in this 
case is the predictor entered at step 1

2. to build a sequential model according to some theory

– e.g., broad measure of personality entered at step 1, more 
specific/narrow attitudinal measure entered at step 2

 order of entry is crucial to outcome and interpretation

 predictors can be entered singly or in blocks of >1

 now we will have an R, R2, b, , pr2 sr2 for EACH step 
to report

 also test increment in prediction at each block:
– R2 change

– F change

hierarchical regression
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hierarchical multiple regression

predictor1

predictor2

criterion

step 1

step 

2

R

R2

F

R ch

R2 ch

F ch

step 1

step 

2

model 1
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hierarchical multiple regression

predictor1

predictor2

criterion

step 1

step 

2

R

R2

F

R ch

R2 ch

F ch

step 1

step 

2

model 2

R

R2

F

model 1

model 2
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testing hierarchical models

 = full(er) model [with more variables added]

r  = reduced model 

)1/)1(

)/()R-(R
2

22






f

rf

pNfR

pprf
Fchange

1N,df  frf ppp

rRfRchangeR 222 
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suppose we wanted to repeat our GPA study using 
hierarchical regression..

 further suppose our real interest was motivation and 
study time, we just wanted to control for anxiety:

– enter anxiety at step 1

– enter motivation and study time at step 2

 preliminary statistics would be same as before

 model would be assessed sequentially
– step 1 – prediction by anxiety

– step 2 – prediction by motivation and study time 
above and beyond that explained by anxiety 

an example:
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

for model 1 – R and R2 are the same as bivariate 
r between GPA and Anxiety (as anxiety is the only 

variable in the model).
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

here R2 ch is just the same as R2 because it 
simply reflects the change from zero.
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

for model 2 – R and R2 are the same as our full 
standard multiple regression conducted earlier.
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

R2 ch tells us that by including study time and 
motivation we increase the amount of variance 

accounted for in GPA by 40%

(this is the critical bit!)
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

alternatively, R2 ch tells us that after controlling 
for anxiety, study time and motivation explain 

40% of the variance in GPA
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model summary

Model R R2 R2
adj

R2 ch F ch df1 df2 sig F 

ch

1 .505 .255 .228 .255 9.584 1 28 .004

2 .813 .652 .612 .397 14.836 2 26 .000

change statistics

… and F ch tells us that this increment in the 
variance accounted is significant

(null hyp: R2 ch = 0)
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Summary Table for Analysis of Regression:

anova

1p,p  Ndf

Model

Sums of 

Squares df

Mean Square

F sig

1  Regression 1702.901 1 1702.901 9.584 .004

Residual 4964.567 28 177.306

Total 6667.46 29

2  Regression 4346.03 3 1448.68 16.23 .000

Residual 2321.43 26 89.29

Total 6667.46 29

details for model 1 are just the same as those 
reported in the change statistics section on the 

previous page (as the change was relative to zero)
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Summary Table for Analysis of Regression:

anova

1p,p  Ndf

Model

Sums of 

Squares df

Mean Square

F sig

1  Regression 1702.901 1 1702.901 9.584 .004

Residual 4964.567 28 177.306

Total 6667.46 29

2  Regression 4346.03 3 1448.68 16.23 .000

Residual 2321.43 26 89.29

Total 6667.46 29

details for model 2 test the overall significance of the 
model (and are therefore exactly the same as we 
would get if we had done a standard regression)
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coefficients 

1p,p  Ndf

Model B SE  t sig

1  constant -80.233 7.595 7.009 .000

ANX 5.268 1.700 .505 3.009 .004

2  constant -95.02 3 1448.68 16.23 .000

ANX 1.678 1.437 .16 1.168 .253

ST .789 .208 .42 3.785 .000

MOT 1.453 .484 .46 3.000 .005

model 1 shows the coefficients for anxiety as the 
predictor of GPA (i.e., the variables included at step 1)
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coefficients 

Model B SE  t sig

1  constant -80.233 7.595 7.009 .000

ANX 5.268 1.700 .505 3.009 .004

2  constant -95.02 3 16.23 .000

ANX 1.678 1.437 .16 1.168 .253

ST .789 .208 .42 3.785 .000

MOT 1.453 .484 .46 3.000 .005

model 2 is identical to the coefficients table we 
would get in standard multiple regression if all 

predictors were entered simultaneously
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summary of results

step R2 F R2 ch F ch

1 ANX .255 9.604* .255 9.584*

2 ST   .651 16.23* .397 14.836*

MOT
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some uses for hierarchical multiple 

regression (HMR)

 to control for nuisance variables

– as we have done now

– logic is same as for ancova

 to test mediation (briefly covered next week)

 to test moderated relationships (interactions)

Ŷ = b1X1 + b2X2 + b3X1X2 +  c
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Difference between structure of 

Standard and Hierarchical MR tests
Hierarchical Multiple Regression:

1. Tests overall model automatically

2. Tests each Block (subgrouping of 
variables) separately (2 sets of Fs)

3. Tests unique effect of each IV for 
variables in this block and earlier – but 
βs don‟t exclude overlapping variance 
with variables in later blocks

4. Does not test for interactions 
automatically – but use HMR to test 
manually (moderated MR next week)

5. Report each block R2 change with F 
test, plus IVs‟ βs with t-tests from each 
block as entered, plus final model R2

with F test, plus relevant follow-ups.

6. Depending on theory may or may not 
report betas for IVs from earlier blocks 
again if they change in later blocks

- Usually not for if early block = control

- Definitely yes if mediation test

Standard Multiple Regression:

1. Tests overall model R2

automatically

2. Does not test 
subgroupings of variables 
(Blocks)

3. Tests unique effect of 
each IV (i.e., covariation 
of residual DV scores with 
IV once all other IVs‟ 
effects are controlled 
(partialled out))

4. Does not test for 
interactions automatically

5. Report Model R2 with F 
test, plus each IVs‟ βs 
with t-tests, plus relevant 
follow-ups
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 multicollinearity and singularity
– this condition occurs when predictors are highly correlated 

(>.80 - 90)

– diagnosed with high intercorrelations of IVs (collinearities) and a 
statistic called tolerance

– tolerance = (1 - R2
x)

– R2
x is the overlap between a particular predictor and all the 

other predictors
• low tolerance = multicollinearity  singularity

• high tolerance = relatively independent predictors

– multicollinearity leads to unstable calculation of regression 
coefficients (b), even though R2 may be significant 

 Some additional info about suppressor variables, 
handling missing data, and cross-validation is provided 
in the “Practice Materials” section of the web site

some issues in SMR & HMR
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assumptions of multiple regression

 distribution of residuals

– normality: conditional array of Y values are normally distributed 

around Ŷ (assumption of normality in arrays)

– homoscedasticity: variance of Y values are constant across 

different values of Ŷ (assumption of “homogeneity of variance in 

arrays”)

– linearity: relationship between Ŷ and errors of prediction

– independence of errors

 scales (predictor and criterion scores)

– normality (variables are normally distributed), linearity (there is 

a straight line relationship between predictors and criterion) 

predictors are not singular (extremely highly correlated)

– measured using a continuous scale (interval or ratio)
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In class next week:

 Moderated multiple regression

 Assignment 2

In the tutes:

 This week: Multiple regression, SPSS

 In 2 weeks: Moderated regression, SPSS

readings :

 Howell Ch 15

 Field Ch 5


