psyc3010 lecture 7

correlation and regression multiple regression

last week: ancova and blocking next week: standard vs hierarchical regression

last week \rightarrow this week

- last week we looked at some methodological and statistical ways to improve power
- one of those strategies (ANCOVA) involved predicting what a group mean on the DV would have been if all groups were equal on a control variable - it achieved this via regression
- today we review bivariate correlation \& regression, and introduce multiple regression

Experimental vs Correlational Research

- Experiments:
- Determine causation through manipulation of IVs in controlled setting, assessing effect on DV
- Impossible or unethical to manipulate factors such as personality, brain damage, long-term stress
- Correlational research:
- Measure variables (predictors) and correlate with outcome / dependent variable (criterion)
- Use bivariate regression (1 predictor) or multiple regression (>1 predictor)
- ANOVA (group diffs) \neq Experiment (random assignment).
- Random assignment is the basis for inferring causation
- Sometimes use ANOVA to look at factors like gender that are observed - in which case cannot conclude causality
- Sometimes analyse experiments using 'group' coded [categorical] variables in regression (e.g., so can do groovy mediation / moderation - see later in course)
- Adding to the confusion, in regression (correlational analysis) you get an F statistic which tests whether the model is significant
- Point: Don't confuse the statistical issue (ANOVA vs regression) with the design issue (Experimental vs Correlational Research)

Measuring association

- is there a relationship between the number of social events attended per month (X) and life satisfaction, measured on 9-point scale (Y)
- do scores on X and Y covary?
- is there a correlation between them?
- scatterplot:
- slope indicates general direction (+ or -)
- width of ellipse indicates magnitude

Test score

Drunkeness

No correlation
/ covariance

Number of letters in last name
association between number of social events attended (X) and life satisfaction (Y)
participant social events attended life satisfaction

11	1		2
$\dagger 2$	2	Notice the changing 3	
13	2	convention re labelling of the DV and IVs:	2
14	3	- ANOVA: IVs	5
15	4	usually A, B, C	5
16	5	and $D V=X$ - Regression /	7
17	6	Correlation: IVs	5
- 8	8	usually $\mathrm{X}, \mathrm{Z}, \mathrm{W}$ (or	6
\$9	9	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$) and	7
110	10		8

association between number of social events attended (X) and life satisfaction (Y)

quantifying the relationship

covariance: average cross-product of the deviation scores (as seen in Lecture 6)

$$
\operatorname{cov}_{X Y} \text { or } S_{X Y}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{N-1}
$$

$$
=53 / 9=5.89
$$

positive values \rightarrow positive relationship negative values \rightarrow negative relationship
association between number of social events attended (X) and life satisfaction (Y) (deviation scores)

quantifying the relationship

- unfortunately covariance is scale dependent we can only tell whether a covariance of 5.89 is strong/weak if we know the scale of our variables
- e.g., 1-9 rating scale
with $\operatorname{cov} 5.89$ (53/9)
vs. 3-27 rating scale

with cov 17.69 (159/9) if triple all scores
- smiley faces ?
- direct measure (e.g., brain volume) ?

quantifying the relationship

-correlation: standardised covariance - i.e., covariance relative to standard deviations of X and Y :

$$
r_{X Y}=\frac{\operatorname{cov}_{X Y}}{S_{X} S_{Y}}=\frac{\sum(X-\bar{X})(Y-\bar{Y}) / N-1}{S_{x} S_{y}}
$$

$$
S_{y}=\sqrt{\frac{\sum(Y-\bar{Y})^{2}}{N-1}}=\sqrt{\frac{40}{9}}=2.11
$$

$$
S_{x}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}}=\sqrt{\frac{90}{9}}=3.16
$$

quantifying the relationship

"correlation: average cross-product of the standard scores of two variables

$=5.89 /(3.16 \times 2.11)$
$=.8833$ (and same .88 with $3-27$ scale for Y)
positive values \rightarrow positive relationship ($\max =1$)
negative values \rightarrow negative relationship ($\mathrm{min}=-1$)

- r is comparable across studies \& scales (vs covariance)!
- When we say correlation, we usually mean r. But there are other correlation statistics. To be precise, r is called a Pearson correlation or zero-order correlation.

interpreting r in terms of variance

 remember, PSYC3010 is all about variance!- r^{2-} the coefficient of determination: proportion of variance in one variable that is explained by the variance in another

$$
r^{2}=.7802
$$

- 78\% of the variance in life satisfaction is explained by \# of social events attended per month
-And therefore, $1-r^{2}=$ error or residual variance in data (22\% of the variance in life satisfaction is not explained by social events)

testing r for significance

- is r large enough to conclude that there is a non-zero correlation in the population?

$$
t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}=\frac{.8833 \sqrt{8}}{\sqrt{1-.7802}}=\underline{5.3195}
$$

$$
d f=N-2=8
$$

$$
t_{\alpha=.05}(8)=2.306
$$

Effect variance accounted for * \# of observations

- the relationship between life satisfaction and \# of social events attended per month is significant, $r=.88, t(8)=5.32, p<.05$. used to arrive at statistic, divided by error variance - Like ANOVA!

r as a population estimate $-r_{\text {adj }}$

- r is a sample statistic and is biased to sample (like etasquared in our 'estimates of effect size' lecture).
- can calculate rho, ρ, the unbiased estimate of the population correlation coefficient - estimated by $r_{\text {adj }}$

$$
r_{\mathrm{adj}}=\sqrt{1-\frac{\left(1-r^{2}\right)(N-1)}{N-2}}=\sqrt{1-\frac{\left(1-.88^{2}\right)(9)}{8}}=\underline{.8676}
$$

$$
\left.-r^{2}{ }_{\text {adj }}=.7527 \text { (vs 78\% for r} r^{2}\right)
$$

- $r_{\text {adj }}$ is always smaller than r (more conservative) - like ω^{2}
-The difference between the two becomes greater as sample size decreases

correlation and prediction - regression

- estimating a score on one variable (Y, criterion) on the basis of scores on another variable (X, predictor)
\rightarrow note, prediction is implied in a conceptual sense, not a literal sense. Cannot conclude definitively re causality because no random assignment - in correlational designs, we infer causality based on theory. If theory is wrong, DV causes IV or both are caused by $3^{\text {rd }}$ variable!
\rightarrow regression of Y on $X(X$ is IV $) \neq$ regression of X on Y (X is DV) - phrase is "regress DV on IV(s)"
\rightarrow objective is to find the best fitting line on the scatter plot. This represents the best linear model of the data.

predicting life satisfaction (Y)

 from number of social events attended (X)

correlation and prediction - regression

 bivariate regression equation:$$
\hat{Y}=b X+a
$$

$\hat{\mathbf{Y}}=$ predicted value of \mathbf{Y}
$b=$ slope of regression line (change in Y associated with a 1 - unit change in X)
$\mathrm{X}=$ value of predictor
$\mathrm{a}=$ intercept (value of Y when $\mathrm{X}=0$)

correlation and prediction - regression

bivariate regression equation:

$$
\hat{\mathbf{Y}}=\mathbf{b} \mathbf{X}+\mathbf{a} \text { For a } 1 \text {-unit change in } \mathrm{X}
$$

expect Y to change +.59 units
$b=\frac{\operatorname{cov}_{X Y}}{s_{X}^{2}}=5.89 / 3.16^{2}=\underline{.5898}$

$$
=\mathrm{r} \frac{s_{Y}}{s_{X}}=.8833 \times 2.11 / 3.16=. \underline{.5898}
$$

correlation and prediction - regression

bivariate regression equation:

$$
\begin{aligned}
& \qquad \hat{Y}=b X+a \\
& =\bar{Y}-b \bar{X} \\
& =5-.5898(5) \\
& =\underline{2.0508}
\end{aligned}
$$

association between number of social events attended (X) and life satisfaction (Y)

the regression slope

b is important because it describes the best line of fit to the data - line of fit that achieves the least squares criterion
-Formula looks like r in correlation:

$$
\mathrm{b}=\frac{\mathrm{COV}_{X Y}}{\mathrm{~S}_{X}^{2}} \quad \mathrm{r}=\frac{\mathrm{COV}_{X Y}}{\mathrm{~S}_{X} \mathrm{~S}_{Y}}
$$

- so if the data were standardised...
- $S_{X}=S_{Y}$
- and S_{X} and $\mathrm{S}_{\mathrm{Y}}=1$
- $\mathrm{COV}_{X Y}=\mathrm{r}_{\mathrm{XY}}=b$
-and b would become a standardised regression coefficient, β (beta) - β indicates Z score change in Y predicted from a 1 SD increase in X
- How many SDs change in Y would you expect from 1 SD change in X ?

correlation and prediction - regression

(unstandardised) bivariate regression equation:

$$
\hat{\mathbf{Y}}=b X+a
$$

Standardised bivariate regression equation:

$$
Z_{Y}=\operatorname{beta} Z_{X}=r_{X Y} Z_{X}=.88 Z_{X}
$$

- For a 1 SD change in X, expect .88 SD increase in Y

errors of prediction

X unknown - best predictor of Y is $\overline{\mathrm{Y}}$

Number of Social Events Attended

X known - best predictor of Y is $\hat{Y}(a$ conditional value - depends on X)

the standard error of the estimate

$S_{Y, X}$ reflects the amount of variability around the regression slope (\hat{Y}, a conditional value), and is an important statistic in correlation and regression
$-\mathrm{S}_{\mathrm{Y} . \mathrm{X}}=\sqrt{\frac{\sum(Y-\hat{Y})^{2}}{N-2}}=\sqrt{\frac{S S_{\text {error }}}{d f}}=S_{Y} \sqrt{1-r^{2}}$

- the regression line is fitted according to the least squares criterion:
- such that $\Sigma(Y-\hat{Y})^{2}$ is a minimum
- i.e., such that that errors of prediction are a minimum
$e_{i}=Y_{i}-\hat{Y}_{i}=$ errors of prediction
association between number of social events attended (X) and life satisfaction (Y) participant social events attended life satisfaction

$\begin{aligned} & 1 \\ & \hline 1 \\ & \hline \end{aligned}$

1	e.g., for this data, b	2
2	$=.59$ and $a=2.05$.	3
2	$\hat{Y}=b X+a$	
3	$\hat{Y}_{1}=.59(1)+2.05$	5
4	5	
5	$=2.64$	
6	$Y_{1}=2$	7
8	5	
9	$e_{1}=2-2.64=-.64$	6
10	Goal: minimize $\sum e_{i}{ }^{2}$	8

significance of the regression slope

b and β, like r, can be tested for significance (if assumptions are met):

$$
\begin{aligned}
t & =\frac{(b)\left(\mathrm{S}_{X}\right)(\sqrt{N-1})}{S_{Y . X}} \quad d f=N-2 \\
& =(.5898)(3.16)(\sqrt{9})
\end{aligned}
$$

.9892
$=\underline{5.6523}$

Significant regression coefficient
= a slope that significantly differs from zero (+ or -). Null
hypothesis is that $\mathrm{b}=0$, i.e. there is no systematic change in Y when X increases by a unit.
same formula for β (if b is significant, β will be also)

partitioning the variance

 quite similar to anova (its all about variance!)in anova,
SS Between groups, SS residual

$$
X_{i}=\mu+\tau_{j}+e_{i j}
$$

in regression,
SS predicted, SS residual

$$
Y_{i}=b X_{i}+c+e_{i}
$$

$\mathrm{SS}_{Y}=\mathrm{SS}_{\text {regression }}+\mathrm{SS}_{\text {residual }}$

where

$$
\begin{gathered}
S S_{Y}=\Sigma(Y-\bar{Y})^{2} \\
S S_{\text {regression }}=\Sigma(\hat{Y}-\bar{Y})^{2} \\
S S_{\text {residual }}=\Sigma(Y-\hat{Y})^{2} \\
F(1, N-2)=\frac{\text { MS regression }}{\text { MS residual }}
\end{gathered}
$$

$$
D f_{Y}=N-1
$$

$$
\text { Df }{ }_{\text {regression }}=\mathrm{p} \text { [\# predictors] }
$$

$$
\text { i.e. } 1 \text {, for bivariate }
$$

$$
D f_{\text {residual }}=N-p-1
$$

Tests hypothesis that the model accounts for significant variance in the DV. Null hypothesis is that R2 $=0$.

$\mathrm{SS}_{Y}=\mathrm{SS}_{\text {reqression }}+\mathrm{SS}_{\text {residual }}$ (also, $\left.\mathrm{df}_{\text {total }}=\mathrm{df}_{\text {regression }}+\mathrm{df}_{\text {residual }}\right)$

the standard error of the estimate

- 68% of individuals will score within + or - . 9892 units of the predicted score (Yhat).

Bigger $r_{x y}$-> smaller $S_{y . x}$ - i.e., a high correlation between X and Y reduces the standard error of estimate and enhances the accuracy of the prediction.

Remember r^{2} is overly liberal (inflated) with small samples - we also find therefore that $\mathrm{S}_{\mathrm{y} . \mathrm{x}}$ is underestimated for small samples

bivariate regression \rightarrow multiple regression

correlation and bivariate regression
\rightarrow single predictor multiple regression
\rightarrow variation is a function of multiple predictors usually acting simultaneously - therefore achieve better prediction
\rightarrow Multiple correlation: relation between criterion Y and a set of predictors
\rightarrow Multiple regression: scores on criterion Y are predicted using > 1 predictor

bivariate regression \rightarrow multiple regression

multiple regression
$\rightarrow 2$ major steps/issues

- strength of relationship between criterion and set of predictors: multiple R, R^{2}
- importance of individual predictors: b, β, sr, pr
\rightarrow predictors are usually correlated so their contribution overlaps - this has implications for both steps

What you test for:

Bivariate regression:

- Does the predictor account for significant variance in the DV?
- Two tests with same significance value:
- F test for Model R ${ }^{2}=$ squared t-test of β for IV

Multiple regression:

- Do the predictors jointly account for significant variance in the DV?
- F test of Model R²
- For each IV: does it uniquely account for variance in the DV?
- t-test of β for each IV
- Model R^{2} can be sig even if individual $\beta(s)$ are not, or vice versa

bivariate regression

Multiple Regression

- when predictors are uncorrelated
- can unambiguously identify proportion of variance accounted for by each predictor
- R^{2} (i.e., the variance in DV accounted for by linear model including all predictors) $=$ $r_{Y 1}{ }^{2}+r_{Y 2}{ }^{2}$
- predictor importance indicated by $r_{Y 1}{ }^{2}$ and $\mathrm{r}_{\mathrm{Y} 2}{ }^{2}$ respectively
....but predictors are rarely uncorrelated
- so R^{2} generally $<r_{Y 1}{ }^{2}+r_{Y 2}{ }^{2}$
- predictor importance difficult to ascertain

multiple regression

multiple regression

 the zero-order correlations can be misleading

contribution of each predictor in terms of r

contribution of each predictor in terms of r

multiple regression

The variance in the DV accounted for by the shared variance of the IVs is double counted if have >1 predictor and focus on regular ("zero-order", Pearson) correlations.

Implications:

- (1) $R^{2}{ }_{Y .12}<r^{2}{ }_{Y 1}+r^{2}{ }_{Y 2}-$ IQ and studying account for $<70 \%$ of variance in test score. R2 measures the non-redundant variance in DV accounted for from combo of variables.
- (2) Need to think about correlations between each IV and the DV adjusted to control for the effects of other IVs - partial and semi-partial correlations.

the partial correlation

examines the

 relationship between predictor 1 and the criterion, with the variance shared with predictor 2 partialled out of BOTH$p r^{2}=$ the proportion of residual variance in the criterion uniquely accounted for by predictor 1 [A/(A+B)]

the semi-partial correlation

examines the relationship between predictor 1 and the criterion, after partialling out of predictor 1 the variance shared between predictor 1 and 2
$s p r^{2}=$ the proportion of
variance in the criterion UNIQUELY accounted for by predictor 1 [A/(A+B+C+D)]

Difference between structure of ANOVA tests and MR tests

ANOVA:

1. No test of overall model
2. Tests main effect of each IV (differences in marginal means across levels of IV, regardless of other variables' effects - other variables assumed to be un-correlated [equal n, random assignment])
3. Tests all interactions automatically
4. Report Fs and effect sizes for each IV and interaction, plus relevant follow-ups

Multiple Regression:

1. Tests overall model automatically
2. Tests unique effect of each IV (i.e., covariation of residual DV scores with IV once all other IVs' effects are controlled (partialled out))
3. Does not test for interactions (unless you ask it to moderated multiple regression, which we cover in 2 weeks)
4. Report Model R^{2} with F test, plus each IVs' β s with t-tests, plus relevant follow-ups

Next week in class:

- Hierarchical vs standard regression

In the tutes:

- This week: Correlational designs, SPSS
- Next week: Multiple regression, SPSS

readings :

- Howell Ch 15
- Field Chapter 5

