psyc3010 lecture 2

logic and computations of factorial anova

last week: introduction to factorial designs next week: simple effects and effect size

Blackboard

http://www.elearning.uq.edu.au/

see BB for:

- Lecture notes (before lecture, ppt & pdf)
- Tute notes (after tutes)
- Forums
- Additional material incl. course profile & practice exams (later)
- Psyc2010 practice exam (not examined _specifically_ but may include material that is also covered in psy3010, which IS examinable)

announcements

- tutorial allocations now completed check web or 3rd year noticeboard
 - With problems, e-mail
 <u>e.puhakka@psy.uq.edu.au</u>
- full course outline available on web
- Tutes start this week !
 - First tute is immediately after class!

Revisiting assessment deadlines

- two written assignments
- due dates are :
 - assignment 1 → 4pm Monday September 8th
 - assignment 2 → 4pm Monday October 20th

ICEBRE&KER!

last week \rightarrow this week

- Iast week we introduced the concept of factorial designs
- we reviewed & learned important terminology and concepts:
 - Factors / independent variables, dependent variables
 - Crossed designs A x B
 - Cell means, marginal means, grand means
 - Main effects, interaction effects, simple effects
 - How one factor qualifies or moderates the effect of another
 - Ordinal and disordinal interactions
- this week we cover factorial designs in more detail, and go over the conceptual and computational processes involved in between-subjects factorial anova

topics for this week

conceptual underpinnings of ANOVA

relationship between hypotheses, variance, graphical representations of data, and formulae (one-way and two-way analyses)

links between t, one-way ANOVA, and factorial ANOVA

understanding linear effects calculating residuals (error) for individual scores in factorial ANOVA

- calculations underlying ANOVA
- following up interactions with plots

anova: conceptual underpinnings

- like most statistical procedures we use, anova is all about partitioning variance
- we want to see if variation due to our experimental manipulations or groups of interest is proportionally greater than the rest of the variance (i.e., that is *not* due to any manipulations etc)
- do participants' scores (on some DV) differ from one another because they are in different groups of our study, more so than they differ randomly and due to unmeasured influences?

notation review

H₀: $\mu_1 = \mu_2$ or (more mathematically convenient) $\mu_j : \mu_1 = 0$ H₁: $\mu_1 \neq \mu_2$ or (more convenient) $\mu_j = \mu_1 \neq 0$ for at least one j

for a one-way ANOVA, with j conditions: mu j = population means of group j mu dot = population grand mean

null hypothesis = there is no between-group variance (no variability between the group means and the grand mean)

alternative hypothesis = at least one group mean is significantly different from the grand mean.

Sources of variance...

Null hypothesis : $\mu_j = \mu$. [or sum(mu j – mu dot) = 0] Alt hyp: $\mu j \neq \mu$. for at least one j [or sum(mu j – mu dot) $\neq 0$]

univariate anova

Total Variation

Between-groups variance

Within-groups variance

But need to consider not just absolute variability between groups but relative variability compared to 'error' variance = within-group variance

univariate anova

Total Variation

Between-groups variance

Within-groups variance

 $n\sum_{j}(\overline{X}_{j}-\overline{X}_{j})^{2}$

 $n\sum(X \text{ bar } j - X \text{ bar } dot)^2 =$ people per group x sum of squared differences between **group means and grand mean** = estimate of between groups variability

$$\sum (X_{ij} - \overline{X}_j)^2$$

 $\sum (X \text{ ij } -X \text{ bar } j)^2 = \text{sum}$ of squared differences between individual scores and group mean = estimate of within groups variability

So what is ANOVA ?

- 1. Estimate of between-groups variability
- 2. Estimate of within-groups variability
- 3. Weight each variability estimate by # of observations used to generate the estimate ("degrees of freedom")
- Compare ratio

 $\frac{[[n\sum(X \text{ bar } j - X \text{ bar } \text{dot})^2] / (j - 1)]}{[[\sum(X \text{ ij } - X \text{ bar } j)^2] / [j (n-1)]]}$

When the F ratio is > 1, the treatment effect (variability between groups) is bigger than the "error" variability (variability within groups). Or more specifically:

- The sum of the squared differences between the group means and the grand mean x the number of people in each group, divided by the number of groups minus 1, is bigger than
- the sum of the squared differences between the observations and the group means, weighted by the number of observations in each group minus 1 x the # of groups

hypothesis testing

differences between 2 means – t-test (or one-way anova)

- *H*₀: μ₁ = μ₂
 the null hypothesis no differences between treatment means
- H₁: the null hypothesis is false
 - the alternative hypothesis there is a difference between treatment means

differences among 3+ means – one-way anova

- $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_j$
 - the null hypothesis no differences among treatment means
- H₁: the null hypothesis is false
 - the alternative hypothesis there is at least one difference among treatment means

logic of the t-test

• independent samples t-test: 'Is the difference between two sample means greater than would be expected by chance?'

A ratio of the systematic variance (i.e. your experimental manipulation) to the unsystematic variance

t = <u>observed difference between two independent means</u> estimate of the standard error of the mean differences

if the observed difference is similar to the difference you would typically expect between means, t = 1

if the observed difference is **greater than** *the difference you would typically expect between means, t > 1*

larger values of t indicate that H₀ is probably wrong

logic of univariate (one-way) anova

the test statistic is the F-ratio

 $F = MS_{treat}/MS_{error}$

A ratio of the systematic variance (i.e. your experimental manipulation or treatment) to the unsystematic variance

where $MS_{treat} = index of variability among treatment means (SS_{TR}/df_{TR}) or (SS_j/df_j)$

and MS_{error} = index of variability among participants within a cell, i.e. pooled within-cell variance (SS_{Error}/df_{Error}) = average of s² from each sample, a good estimate of σ_e^2 (population variance)

- if MS_{treat} is a good estimate of σ_e^2 , $F = MS_{treat}/MS_{error} = 1$
- if $MS_{treat} > \sigma_e^2$, $F = MS_{treat}/MS_{error} > 1$
- larger values of F indicate that H0 is probably wrong

the structural model of univariate anova

$X_{ij} = \mu + \tau_j + e_{ij}$

for *i* cases and *j* treatments:

X_{ii.} any DV score is a combination of:

 $\mu \rightarrow$ the grand mean,

 $\tau_i \rightarrow$ the effect of the j-th treatment $(\mu_i - \mu)$

e_{ij} → error, averaged over all i cases and j treatments

Derivation for one-way ANOVA: expected mean squares

- an expected value of a statistic is defined as the 'long-range average' of a sampling statistic
- our expected mean squares are:
 - $E(MS_{error}) \rightarrow \sigma_e^2$
 - i.e., the long term average of the variances within each sample (S²) would be the population variance σ_{e}^{2}
 - $E(MS_{treat}) \rightarrow \sigma_e^2 + n\sigma_\tau^2$
 - where σ_{τ}^2 is the long term average of the variance <u>between sample</u> <u>means</u> and n is the number of observations in each group
 - i.e., the long term average of the variances <u>within</u> each sample <u>PLUS</u> any variance <u>between</u> each sample
 - Basically if group means don't vary then $n\sigma_{\tau}^2 = 0$, and so then $E(MS_{treat}) = \sigma_e^2 + 0 = \sigma_e^2 = E(MS_{error}) = \sigma_e^2$ See e.g., Howell (2007) p. 303

partitioning the variance

Research questions

One-way: Is there a treatment effect (is there between-group variability)?

Two-way:

- Is there a main effect of A ? (Is there variability between the levels of A, averaging over the other factor? [Do the A group means differ from each other? Do the marginal means of A differ from the grand mean?])
- Is there a main effect of B? (Is there variability between the levels of B, averaging over the other factor? [Do the B group means differ from each other? Do the marginal means of B differ from the grand mean?])
- Is there an A x B interaction? (Does the simple effect of A change for different B groups? Does the simple effect of B change for different A groups?) [Does the simple effect change across the levels of the other factor? Do the cell means differ from the grand mean more than would be expected given the effects of A and B?]

Sources of variance in 2 way factorial designs

univariate anova

Total Variation

Between-groups variance

factorial (2-way) anova

Variance due to factor A

Within-groups variance

Variance due to factor B

Variance due to A X B

So what is factorial ANOVA ?

- In 2-way design, estimate betweengroups variability
 - Due to main effect of first factor
 - Due to main effect of second factor
 - Due to interaction of two factors
- 2. Estimate within-groups variability
- 3. Weight each variability estimate by # of observations used to generate the estimate ("degrees of freedom")
- Compare ratio
 - of between-groups variability among levels of A to error, B to error, and ABcells (adjusted for main effects) to error

Formulae for a 2 way Conceptual or Definitional between-subjects design Total With factors A and B

$$SS_{TOTAL} = \sum (X - \overline{X}..)^2$$

Between-Groups

Within Cells

 $SS_{ERROR} = \sum (X - \overline{X}_{jk})^2$

$$SS_{A} = nb\sum_{k} (\overline{X}_{j.} - \overline{X}_{..})^{2}$$

$$SS_{B} = na\sum_{k} (\overline{X}_{.k} - \overline{X}_{..})^{2}$$

$$SS_{AB} = n\sum_{k} (\overline{X}_{jk} - \overline{X}_{j.} - \overline{X}_{.k} + \overline{X}_{..})^{2}$$

Squaring the deviation of every score from the grand mean x 1 (# of observations behind every score) = total SS

Squaring the deviation of the marginal means for each level of the factor from
 the grand mean x [n x levels of other factor (# of observations behind each factor marginal mean)] = factor SS

Squaring the deviation of each cell mean from the grand mean, adjusting for the 2 marginal means, x n (# of observations behind each cell mean) = factor SS

Squaring the deviation of each score from the cell mean x 1 (# of observations behind each score) = within-cell or error SS

Formulae for a 2 way between-subjects A x B designConceptualComputationalTotalTotal

$$SS_{TOTAL} = \sum (X - \overline{X})^2$$

$$(\overline{X})^2$$
 $SS_{TOTAL} = \sum$

Between-Groups

$$SS_{A} = nb\sum_{k} (\overline{X}_{j.} - \overline{X}_{..})^{2}$$

$$SS_{B} = na\sum_{k} (\overline{X}_{.k} - \overline{X}_{..})^{2}$$

$$SS_{AB} = n\sum_{k} (\overline{X}_{jk} - \overline{X}_{j.} - \overline{X}_{.k} + \overline{X}_{..})^{2}$$

Within Cells
$$SS_{ERROR} = \sum (X - \overline{X}_{jk})^2$$

Hint:
$$T = \text{total} = \text{sum}$$

of X

Total

$$= \sum X^{2} - \frac{(\sum X)^{2}}{N} = \sum X^{2} - \frac{(T_{..})^{2}}{N}$$
Between-Groups

$$SS_{A} = \sum \frac{T_{j.}^{2}}{nb} - \frac{(T_{..})^{2}}{N}$$

$$SS_{B} = \sum \frac{T_{k.}^{2}}{na} - \frac{(T_{..})^{2}}{N}$$

$$SS_{CELLS} = \sum \frac{T_{jk}^{2}}{n} - \frac{(T_{..})^{2}}{N}$$

$$SS_{AB} = SS_{CELLS} - SS_{A} - SS_{B}$$
Within Cells

 $SS_{ERROR} = SS_{TOTAL} - SS_{CFLLS}$

Degrees of freedom summary

dftotal = N - 1

dffactor = no. of levels of the factor -1

 $df_B = b - 1$ $df_A = a - 1$

*df*interaction = product of *df* in factors included in the interaction

 $df_{BA} = (b - 1) \times (a - 1)$

 df_{error} = total no. of observations – no. of treatments = N - ba

or *df* for each cell x no. of cells = (n-1) ba

For a refresher of what DFs are see:

Howell (2007) p.50 Field (2005) p.319

hypothesis testing

factorial anova

- main effects (shown for an IV with 3 levels)
 - $H_0: \mu_1 = \mu_2 = \mu_3$
 - no differences among means across levels of the factor
 - H₁: null is false

Interaction (shown for a 2 x 3 design)

- $H_0: \mu_{11} \mu_{21} = \mu_{12} \mu_{22} = \mu_{13} \mu_{23}$
 - if there are differences between particular factor means, they are *constant* at each level of the other factor (hence the parallel lines)
 - The 'difference of the differences' is zero
- *H*₁: null is false

logic of factorial anova

A simple extension of one-way anova the F-ratio is still the test statistic we use

 $F = MS_{treat}/MS_{error}$

as for univariate anova, $MS_{error} =$ pooled variance (average s²)

but now we have a separate **MS_{treat} for each effect**:

MS_{treat} for effect of factor A = MS_A(first main effect)
 MS_{treat} for effect of factor B = MS_B (second main effect)
 MS_{treat} for effect of factor AB = MS_{AB} (interaction effect)

A ratio of the systematic variance of EACH EFFECT (i.e. of your experimental manipulations or treatments) to the unsystematic variance

Derivation for factorial ANOVA: expected mean squares

E(MS_{error})

 $-\sigma_{e}^{2}$ (i.e., pooled within group variance - as for univariate anova)

E(MS_A)

- σ_e^2 + $nb\sigma_{\alpha}^2$ (i.e., pooled within group variance PLUS variance between levels of A)

E(MS_B)

- σ_e^2 + $na\sigma_\beta^2$ (i.e., pooled within group variance PLUS variance between levels of B)

E(MS_{AB})

 $-\sigma_e^2 + n\sigma_{\alpha\beta}^2$ (i.e., pooled within group variance PLUS variance between the different combinations of A and B levels)

the conceptual model of factorial anova

$$X_{ijk} = \mu + \alpha_j + \beta_k + \alpha \beta_{jk} + \beta_{jk} \beta_{$$

for i cases, factor A with *j* treatments, factor B with k treatments, and the AxB interaction with *jk* treatments:

X_{iik}, any DV score is a combination of:

 $\mu \rightarrow$ the grand mean,

 $\alpha_{j} \rightarrow$ the effect of the j-th treatment of factor A ($\mu_{Aj} - \mu$), $\beta_{k} \rightarrow$ the effect of the k-th treatment of factor B ($\mu_{Bk} - \mu$), $\alpha\beta_{ik} \rightarrow$ the effect of differences in factor A treatments at

different levels of factor B treatments ($\mu - \mu_{Aj} - \mu_{Bk} + \mu_{jk}$), $e_{ijk} \rightarrow$ error, averaged over all j treatments, k treatments and i cases

partitioning the variance

1-way (univariate) between-subjects anova		
Logic	Derivation (expected mean squares)	Linear Model
Compare variance between groups with variance within groups: <u>var between</u> var within (if variance between groups is larger than variance within, group differences are probably significant)	$E(MS_{treat}) = \sigma_e^2 + n\sigma_\tau^2$ $E(MS_{error}) = \sigma_e^2$ These are what our calculations of MS_{treat} and MS_{error} are based upon (our estimates of var between & var within) $\frac{MS_{treat}}{MS_{error}} = F$	$X_{ij} = \mu + \tau_j + e_{ij}$ (the grand mean does not get a portion as a mean has no variance)
		35

2-way (factorial) between-subjects anova		
Logic	Derivation (expected mean squares)	Linear Model
For each effect:Compare variancebetween means withvariance withingroups:Var b n (levels of) A var w n groupsVar b n (levels of) B var w n groups	$E(MS_A) = \sigma_e^2 + nb\sigma_a^2$ $E(MS_B) = \sigma_e^2 + na\sigma_\beta^2$ $E(MS_{AB}) = \sigma_e^2 + n\sigma_{\alpha\beta}^2$ $E(MS_{error}) = \sigma_e^2$ \downarrow To test each effect (i.e., main effects and the interaction):	$X_{ijk} = \mu + \alpha_j + \beta_k + \alpha_{\beta_{jk}} + e_{ijk}$
<u>var b n (levels of) A x B</u> var w n groups	MS _{effect} MS _{error} = F	36

assumptions of anova

population

- treatment populations are *normally distributed* (assumption of normality)
- treatment populations *have the same variance* (assumption of homogeneity of variance)

sample

- samples are *independent* no two measures are drawn from the same participant
 - c.f. repeated-measures anova more on that later in the semester
- each sample obtained by *independent random sampling* within any particular sample, no choosing of respondents on any kind of systematic basis
- each sample has at least 2 observations and equal n

data (DV scores)

- measured using a continuous scale (interval or ratio)
- mathematical operations (calculations for means, variance, etc) do not make sense for other kinds of scales

an application of betweensubjects factorial anova

- A psychological study of creativity in complex sociochemical environments (Field, 2000)
- 2 factors:
 - three groups of participants go to the pub and have:
 - No beer, or 2 pints or 4 pints
 - half of the participants are distracted and half are not distracted (controls)
- hence, a 2 x 3 between-subjects factorial design *DV:* Creativity
 - unbiased 3rd parties rate the quality of limericks made up by each of our participants

an application of betweensubjects factorial anova

research questions:

- Is there a main effect of alcohol consumption?
 - does the quality of limerick you make up depend upon how many pints of beer you have had?

Is there a main effect of distraction?

Does the quality of limerick you make up depend on whether you were distracted or not?

Is there a consumption x distraction interaction?

 does the effect of distraction upon creativity depend upon consumption (or does the effect of consumption upon creativity depend upon distraction) a combination of IV levels, e.g., 0 pints and distracted, is called a *cell*

in most betweensubjects factorial designs there are *n* observations per cell

the number of cells multiplied by *n* gives you *N*, the total number of observations (abn = N)

Distraction	Alcoho	Consum	ption (pints)	Marginal
Distraction	0	2	4	Totals (B)
	50	45	30	
	55	60	30	
	80	85	30	
	65	65	55	
Distraction	70	70	35	
	75	70	20	
	75	80	45	
	65	60	40	
		1		
Cell Totals	535	535	285	1355
	65	70	55	
	70	65	65	
	60	60	70	
Controls	60	70	55	
	60	65	55	
	55	60	60	
	60	60	50	
	55	50	50	
Cell Totals	485	500	460	1445
Marginal				
Totals (A)	1020	1035	745	2800

<i>cell totals</i> are					
	Distraction	Alcoho	-	otion (pints)	Marginal
calculated – these are		0	2	4	Totals (B)
just the sum of n		50	45	00	
		50	45	30	
observations in each		55	60 05	30	
cell		80 65	85 65	30 55	
Cen	Distraction	65 70	65 70	55 35	
	Distraction	70 75	70 70	20	
marginal totals for		75	80	20 45	
each level of each		65	60	40	
				10	
factor are also	Cell Totals	535	535	285	1355
calculated – these are					
		65	70	55	
the sum of the		70	65	65	
corresponding cell		60	60	70	
	Controls	60	70	55	
totals – summed over		60	65	55	
levels of the other		55	60	60	
		60	60	50	
factor		55	50	50	
	Coll Totala	405	500	460	1.4.4.5
the grand total is the	Cell Totals	485	500	460	1445
sum of all N	Marginal				
	Totals (A)	1020	1035	745	2800
observations		1020	1000		2000
		-	-	-	-

cell means are	Distraction	Alcoho	ol Consum	Marginal	
		0	2	4	Totals (B)
calculated – these are					
just the average of n		50	45	30	
		55	60	30	
observations in each		80	85	30	
cell		65	65	55	
Cell	Distraction	70	70	35	
		75	70	20	
marginal maans for		75	80 60	45 40	
<i>marginal means</i> for		65	60	40	
each level of each	Cell Totals	535	535	285	1355
factor are also	Cell Means	66.88	66.88	35.63	56.46
		00.00	00.00	33	00.40
calculated – these are		70	65	65	
group means averaged		60	60	70	
	Controls	60	70	55	
over the levels of the		60	65	55	
other factor		55	60	60	
		60	60	50	
		55	50	50	
	Cell Totals	105	500	460	1 1 15
the grand mean is	Cell Means	60.63	62.50	57.50	60.21
	Marginal	4000	4005	745	2800
the average of all N	Totals (A)	1020	1035	745	
observations	Means	63.75	64.69	46.56	58.33

	Distraction	Alcoho	Alcohol Consumption (pints)			
$X_{iik} = \mu + \alpha_i + \beta_k + \alpha \beta_{ik} + \beta_{ik} + \alpha \beta_{ik} + \beta_{ik} + \alpha \beta_{ik} + \beta_{ik$	Distraction	0	2	4	Totals (B)	
		\bigcirc	. –			
e _{ijk}		(50)	45	30		
\$0		55	60	30		
		80	85	30		
$X_{111} = \mu + \alpha_1 + \beta_1 + \alpha \beta_{11} + \beta_{11} \beta_{$	Distraction	65 70	65 70	55		
e ₁₁₁	Distraction	70 75	70 70	35 20		
-111		75 75	70 80	20 45		
where		65	60	43 40		
		00	00	40		
$\alpha_1 = \mu_{A1} - \mu$	Cell Totals	535	535	285	1355	
= 63.75-58.33 = 5.42	Cell Means	66.88	66.88	35.63	56.46	
$\beta_1 = \mu_{B1} - \mu$		65	70	55		
		70	65	65		
= 56.46-58.33 = -1.87		60	60	70		
$\alpha \beta = (\mu - \mu - \mu)$	Control	60	70	55		
$\alpha\beta_{11} = (\mu - \mu_{A1} - \mu_{B1} + \mu_{A1})$		60	65	55		
μ_{AB11}),		55	60	60		
= 58.33-63.75-56.46 + 66.88 =		60	60	50		
		55	50	50		
5		405	500	400	4 4 4 5	
therefore	Cell Totals	485	500	460 57 50	1445	
	Cell Means	60.63	62.50	57.50	60.21	
50 = 58.33+5.42–1.87+5+e ₁₁₁	Marginal Totals (<i>A</i>)	1020	1035	745	2800	
(and e ₁₁₁ = 16.88)	Means	63.75	64.69	745 46.56	2800 58.33	
	10160113	03.73	07.03	70.00	44	

	Distraction	Distraction Alcohol Consumption (pints)				
$X_{ijk} = \mu + \alpha_j + \beta_k + \alpha \beta_{jk} + \beta_{ijk} + \alpha \beta_{ijk} + \beta_{ijk} + \alpha \beta_{ijk} + \beta_{$	Distraction	0	2	4	Totals (B)	
e _{ijk} so		50	45	30		
$X_{332} = \mu + \alpha_3 + \beta_2 + \alpha \beta_{32} + \beta_{32} + \beta_{33} + $		55	60	30		
		80	85	30		
e ₃₃₂	Distriction	65	65	55		
where	Distraction	70	70	35		
		75	70	20		
$\alpha_3 = \mu_{A3} - \mu$		75	80	45		
= 46.56-58.33 = - 11.87		65	60	40		
	Cell Totals	535	535	285	1355	
$\beta_2 = \mu_{B2} - \mu$	Cell Means	66.88	66.88	35.63	56.46	
= 60.21-58.33 = 1.88		65	70	55	30.40	
		70	65	65		
$\alpha\beta_{32} = (\mu - \mu_{A3} - \mu_{B2} + \mu_{B2})$		60	60	$\left(\begin{array}{c} 00\\70\end{array}\right)$		
μ_{AB32}),	Control	60	70	55		
r AB32/		60	65	55		
= 58.33 - 46.56-60.21 +		55	60	60		
57.50 = 9.06		60	60	50		
		55	50	50		
therefore						
70 = 58.33 - 11.87 + 1.88 +	Cell Totals	485	500	460	1445	
	Cell Means	60.63	62.50	57.50	60.21	
$9.06 + e_{332}$	Marginal				, , , , , , , , , , , , , , , , , , ,	
(and e ₃₃₂ = 12.6)	Totals (A)	1020	1035	745	2800	
	Means	63.75	64.69	46.56	58.33	
					45	

Formulae for a 2 way between-subjects A x B designConceptualComputationalTotalTotal

$$SS_{TOTAL} = \sum (X - \overline{X})^2$$

$$SS_{A} = nb\sum_{k} (\overline{X}_{j.} - \overline{X}_{..})^{2}$$

$$SS_{B} = na\sum_{k} (\overline{X}_{.k} - \overline{X}_{..})^{2}$$

$$SS_{AB} = n\sum_{k} (\overline{X}_{jk} - \overline{X}_{j.} - \overline{X}_{.k} + \overline{X}_{..})^{2}$$

Within Cells
$$SS_{ERROR} = \sum (X - \overline{X}_{jk})^2$$

Total

$$SS_{TOTAL} = \sum X^{2} - \frac{(\sum X)^{2}}{N} = \sum X^{2} - \frac{(T_{..})^{2}}{N}$$
Between-Groups

$$SS_{A} = \sum \frac{T_{j.}^{2}}{nb} - \frac{(T_{..})^{2}}{N}$$

$$SS_{B} = \sum \frac{T_{k}^{2}}{na} - \frac{(T_{..})^{2}}{N}$$

$$SS_{CELLS} = \sum \frac{T_{jk}^{2}}{n} - \frac{(T_{..})^{2}}{N}$$

$$SS_{AB} = SS_{CELLS} - SS_{A} - SS_{B}$$
Within Cells

$$SS_{ERROR} = SS_{TOTAL} - SS_{CELLS}$$

Degrees of freedom summary

dftotal = N - 1

dffactor = no. of levels of the factor -1

 $df_B = b - 1$ $df_A = a - 1$

*df*interaction = product of *df* in factors included in the interaction

 $df_{BA} = (b - 1) \times (a - 1)$

 df_{error} = total no. of observations – no. of treatments = N - ba

or *df* for each cell x no. of cells = (n-1) ba

Distraction	Alcoho	Marginal		
Distraction	0	2	4	Totals (B)
	50	45	30	
	55	60	30	
	80	85	30	
	65	65	55	
Distraction	70	70	35	
	75	70	20	
	75	80	45	
	65	60	40	
Cell Totals	535	535	285	1355
Cell Means	66.88	66.88	35.63	56.46
	05	70	55	
	70	65	65	
	60	60	70	
Controls	60	70	55	
	60	65	55	
	55	60	60	
	60	60	50	
	55	50	50	
Cell Totals	485	500	460	1445
Cell Means	60.63	62.50	57.50	60.21
Marginal				
Totals (A)	4020	4025	745	2800
Means	63.75	64.69	46.56	58.33
			I	

Calculations

SS_{total}

- -same as in univariate anova
- -variability around grand mean

SS_A and SS_B

- similar to $\ensuremath{\text{SS}_{\text{treat}}}$ in univariate anova
- variability among marginal means

SS_{cells}

- variability among cell means
- caused by effect of A, B or A X B
- $SS_{AB} = SS_{cells} SS_A SS_B$
 - variability due to A x B

SS_{error} - same as univ. anova - variability around cell mean

Dictroction	Alcoh	nol Consur	mption (pints	s) Marginal	
Distraction	0	2	4	Totals (B)	<i>SS</i> tota
					= 1
	50	45	30		—]
	55	60	30		
	80	85	30		
	65	65	55		
Distraction	70	70	35		
	75	70	20		
	75	80	45		
	65	60	40		
Cell Totals	535	535	285	1355	
Cell Means	66.88	66.88	35.63	56.46	
	65	70	55		
	70	65	65		
	60	60	70		
Controls	60	70	55		
	60	65	55		
	55	60	60		
	60	60	50		
	55	50	50		
Cell Totals	485	500	460	1445	
Cell Means	60.63	62.50	57.50	60.21	
Marginal					
Totals (A)	1020	1035	745	2800	
Means	63.75	64.69	46.56	58.33	

$SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
= 172300 - 163333.3 = 8966.7

Distraction	Alcoho	ol Consum	ption (pints)	Marginal $(\Sigma X)^2$
Distraction	0	2	4	Marginal Totals (B) $SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
				= 172300 - 163333.3 = 8966.7
	50	45	30	
	55	60	30	$SS_{A} = \frac{\sum T_{A}^{2}}{nb} - \frac{(\Sigma X)^{2}}{N}$
	80	85	30	
	65	65	55	$= (1020^2 + 1035^2 + 745^2) / 16 - 163333.3$
Distraction	70	70	35	= 3332.3
	75	70	20	
	75	80	45	
	65	60	40	
Cell Totals	535	535	285	1355
Cell Means		66.88		56.46
	66.88 65	00.88 70	35.63	50.40
	03 70		55 65	
	70 60	65 60	65 70	
Controls	60	00 70	55	
Controls	60	65	55	
	55			
	55 60	60 60	60 50	
	55	50	50	
Cell Totals	485	500	460	1445
Cell Means	60.63	62.50	57.50	60.21
Marginal				·
Totals (A)	1020	1035	745	2800
Means	63.75	64.69	46.56	58.33

Distraction	Alco	hol Consu	mption (pints)	Marginal $(\Sigma X)^2$
Distraction	0	2	4	Marginal Totals (B) $SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
	50	٨٣	20	= 172300 - 163333.3 = 8966.7
	50	45	30	
	55	60	30	$SS_A = \frac{\sum T_A^2}{nb} - \frac{(\Sigma X)^2}{N}$
	80	85	30	N N
	65	65	55	$=(1020^2 + 1035^2 + 745^2) / 16 - 163333.3$
Distraction	70	70	35	= 3332.3
	75	70	20	
	75		45	$SS_B = \frac{\sum T_B^2}{na} - \frac{(\Sigma X)^2}{N} = (1355^2 + 1445^2) / 24$
	65	60	40	
				-163333.3 = 168.78
Cell Totals	535	535	285	1355
Cell Means	66.88	66.88	35.63	56.46
	65	70	55	
	70	65	65	
	60	60	70	
Controls	60	70	55	
	60	65	55	
	55	60	60	
	60	60	50	
	55	50	50	
	105			
Cell Totals	485	500	460	1445
Cell Means	60.63	62.50	57.50	60.21
Marginal				
Totals (A)	1020	1035	745	2800
Means	63.75	64.69	46.56	58.33

Distraction	Alcol	hol Consu	mption (pir	n ts) Margi
Distraction	0	2	4	Totals
	50	45	30	
	55	60	30	C
	80	85	30	S
	65	65	55	=
Distraction	70	70	35	
	75	70	20	
	75	80	45	S
	65	60	40	C
				_
Cell Totals	535	535	285	1355
Cell Means	00.00	00.00	00.00	56.46
	65	70	55	
	70	65	65	S
	60	60	70	
Controls	60	70	55	(
	60	65	55	_
	55	60	60	
	60	60	50	
	55	50	50	
Cell Totals	485	500	460	1445
Cell Means	00.03	02.50	37.30	60.21
Marginal				r
Totals (A)	1020	1035	745	2800
Means	63.75	64.69	46.56	58.33

$$SS_{cells} = \frac{\sum T_{AB}^{2}}{n} - \frac{(\Sigma X)^{2}}{N} =$$

$$(535^{2} + 535^{2} + 285^{2} + 485^{2} + 500^{2} + 460^{2}) / 8$$

$$- 163333.3 = 5479.2$$

Distraction	Alcohol Consumption (pints)			Marginal $(\Sigma X)^2$
Distraction	0	2	4	Marginal <u>Totals (B)</u> $SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
				= 172300 - 163333.3 = 8966.7
	50	45	30	
	55	60	30	$SS_A = \frac{\sum T_A^2}{nb} - \frac{(\Sigma X)^2}{N}$
	80	85	30	nb = N
	65	65	55	$=(1020^2 + 1035^2 + 745^2) / 16 - 163333.3$
Distraction	70	70	35	= 3332.3
	75	70	20	
	75	80	45	$SS_B = \frac{\sum T_B^2}{na} - \frac{(\Sigma X)^2}{N} = (1355^2 + 1445^2) / 24$
	65	60	40	$N = \frac{1333}{143} + \frac{143}{7} + 24$
				-163333.3 = 168.78
Cell Totals	535	535	285	1355
Cell Means	66.88	66.88	35.63	56.46
	65	70	55	$\sum T_{4P}^{2}$ ($\sum X$) ²
	70	65	65	$SS_{cells} = \frac{\sum T_{AB}^2}{n} - \frac{(\sum X)^2}{N} =$
	60	60	70	
Controls	60	70	55	$(535^2 + 535^2 + 285^2 + 485^2 + 500^2 + 460^2)/8$
	60	65	55	-163333.3 = 5479.2
	55	60	60	
	60	60	50	$SS_{AB} = SS_{cells} - SS_A - SS_B$
	55	50	50	= 5479.2 - 3332.3 - 168.78 = 1978.12
Cell Totals	485	500	460	1445
Cell Means	60.63	62.50	57.50	60.21
Marginal				F
Totals (A)	1020	1035	745	2800
Means	63.75	64.69	46.56	58.33

Distraction	Alcohol Consumption (pints)			Marginal $2 (\Sigma X)^2$		
Distraction	0	2	4	Marginal Totals (B) $SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$		
				= 172300 - 163333.3 = 8966.7		
	50	45	30			
	55	60	30	$SS_A = \frac{\sum T_A^2}{nh} - \frac{(\Sigma X)^2}{N}$		
	80	85	30	nb = N		
	65	65	55	$=(1020^2 + 1035^2 + 745^2) / 16 - 163333.3$		
Distraction	70	70	35	= 3332.3		
	75	70	20			
	75	80	45	$SS_B = \frac{\sum T_B^2}{na} - \frac{(\Sigma X)^2}{N} = (1355^2 + 1445^2) / 24$		
	65	60	40			
				-163333.3 = 168.78		
Cell Totals	535	535	285	1355		
Cell Means	66.88	66.88	35.63	56.46		
	65	70	55	$\sum T_{AB}^{2}$ ($\sum X$) ²		
	70	65	65	$SS_{cells} = \frac{\sum T_{AB}^2}{n} - \frac{(\Sigma X)^2}{N} =$		
	60	60	70			
Controls	60	70	55	$(535^2 + 535^2 + 285^2 + 485^2 + 500^2 + 460^2)/8$		
	60	65	55	-163333.3 = 5479.2		
	55	60	60			
	60	60	50	$SS_{AB} = SS_{cells} - SS_A - SS_B$		
	55	50	50	= 5479.2 - 3332.3 - 168.78 = 1978.12		
Cell Totals	485	500	460	1445		
Cell Means	60.63	62.50	57.50	$\frac{60.21}{SS_{error}} = SS_{total} - SS_{cells}$		
Marginal						
Totals (A)	1020	1035	745	= 8966.7 - 5479.2 = 3487.5		
Means	63.75	64.69	46.56	58.33		

	$SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
Summary Table	$= 172300 - 163333.3 = 8966.7$ $- SS_{A} = \frac{\sum T_{A}^{2}}{nb} - \frac{(\Sigma X)^{2}}{N}$
<u>Source df SS MS F</u> A (cons) B (dist)	$- = 1020^{2} + 1035^{2} + 745^{2} / 16 - 163333.3$ $= 3332.3$ $SS_{B} = \frac{\sum T_{B}^{2}}{na} - \frac{(\Sigma X)^{2}}{N} = 1355^{2} + 1445^{2} / 24$
AB Error	-163333.3 = 168.78
Total	$SS_{cells} = \frac{\sum T_{AB}^{2}}{n} - \frac{(\Sigma X)^{2}}{N}$ = 535 ² + 535 ² + 285 ² + 485 ² + 500 ² + 460 ² /8 - 163333.3 = 5479.2
	$SS_{AB} = SS_{cells} - SS_A - SS_B$

= 5479.2 - 3332.3 - 168.78 = 1978.12

	$SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
Summary Table	= 172300 - 163333.3 = 8966.7 - $SS_A = \frac{\sum T_A^2}{nb} - \frac{(\sum X)^2}{N}$
Source df SS MS F	$- = 1020^2 + 1035^2 + 745^2 / 16 - 163333.3$
A (cons) 3332.3	$\sum T^{2} (\Sigma V)^{2}$ = 3332.3
B (dist)	$SS_B = \frac{\sum T_B^2}{na} - \frac{(\Sigma X)^2}{N} = 1355^2 + 1445^2 / 24$
AB	-163333.3 = 168.78
Error	$-\sum T_{ij}^2 (\Sigma Y)^2$
Total	- $SS_{cells} = \frac{\sum T_{AB}^2}{n} - \frac{(\Sigma X)^2}{N}$
	$= 535^{2} + 535^{2} + 285^{2} + 485^{2} + 500^{2} + 460^{2} / 8$ - 163333.3 = 5479.2
	$SS_{AB} = SS_{cells} - SS_A - SS_B$

= 5479.2 - 3332.3 - 168.78 = 1978.12

	$SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
	= 172300 - 163333.3 = 8966.7
Summary Table	$SS_A = \frac{\sum T_A^2}{nb} - \frac{(\Sigma X)^2}{N}$
Source df SS MS F	$- = 1020^2 + 1035^2 + 745^2 / 16 - 163333.3$
A (cons) 3332.3	= 3332.3
B (dist) 168.75	$SS_B = \frac{\sum T_B^2}{na} - \frac{(\Sigma X)^2}{N} = 1355^2 + 1445^2 / 24$
AB	-163333.3 = 168.78
Error	$SS_{cells} = \frac{\sum T_{AB}^2}{n} - \frac{(\Sigma X)^2}{N}$
Total	$SS_{cells} = \frac{n}{n} - \frac{N}{N}$
	$= 535^{2} + 535^{2} + 285^{2} + 485^{2} + 500^{2} + 460^{2} / 8$ - 163333.3 = 5479.2
	$SS_{AB} = SS_{cells} - SS_A - SS_B$ = 5479.2 - 3332.3 - 168.78 = 1978.12

				$SS_{total} = \Sigma X^2 - \frac{(\Sigma X)^2}{N}$
<u>Summary T</u> Source df	able SS	MS	F	= 172300 - 163333.3 = 8966.7 - $SS_A = \frac{\sum T_A^2}{nb} - \frac{(\sum X)^2}{N}$ - $= 1020^2 + 1035^2 + 745^2 / 16 - 163333.3$
A (cons) B (dist) AB	3332.3 168.75 1978.12			$= 1020^{2} + 1035^{2} + 745^{2} / 16 - 163333.3$ = 3332.3 = 3332.3 $= 1355^{2} + 1445^{2} / 24$ -163333.3 = 168.78
Error	3487.5			- $SS_{cells} = \frac{\sum T_{AB}^2}{n} - \frac{(\Sigma X)^2}{N}$
<u>Total</u>	<u>8966.7</u>			$SS_{cells} = \frac{1}{n} - \frac{1}{N}$ $= 535^{2} + 535^{2} + 285^{2} + 485^{2} + 500^{2} + 460^{2} / 8$ $- 163333.3 = 5479.2$ $SS_{AB} = SS_{cells} - SS_{A} - SS_{B}$

= 5479.2 - 3332.3 - 168.78 = 1978.12

Summary Table

Juillia	ТУТ	avie			
<u>Source</u>	df	SS	MS	F	<pre>df_{factor} = number of levels of that factor -1</pre>
A (cons) 2	3332.3			- Consumption (A) \rightarrow 3 - 1 = 2
B (dist)	1	168.75			- Distraction (B) \rightarrow 2-1 = 1
AB	2	1978.12			df _{interaction}
<u>Error</u>	42	3487.5			= product of <i>df</i> values for factors involved in interaction
Total	47	8966.7			$- AxB \rightarrow 1 X 2 = 2$
	_				

MS stands for MEAN-SQUARE

this is a corrected
 variance estimate used to
 calculate the F-ratio

MS = SS/df

df_{error} = *N*- number of cells in the design - error → 48 - 6 = 42 *df_{total}* = N-1 → 48-1 =47

Summary Table

<u>Source</u>	df	SS	MS	F
A (cons)	2	3332.3	1666.15	
B (dist)	1	168.75	168.75	
AB	2	1978.12	989.06	
Error	42	3487.5	83.02	
Total	47	8966.7		

MS stands for MEAN-SQUARE

this is a corrected
 variance estimate used to
 calculate the F-ratio

MS = SS/df

df_{factor} = number of levels of that factor -1- Consumption (A) \rightarrow 3 - 1 = 2 - Distraction (B) \rightarrow 2-1 = 1 **df**_{interaction} = product of *df* values for factors involved in interaction $-AxB \rightarrow 1X2 = 2$ df_{error} = N - number of cells in the design - error \rightarrow 48 - 6 = 42 df_{total} $= N-1 \rightarrow 48-1 = 47$

Summary Table								
<u>Source</u>	df	SS	MS	F				
A (cons)	2	3332.3	1666.15	20.07	•			
B (dist)	1	168.75	168.75	2.03	\rightarrow			
AB	2	1978.12	989.06	11.91				
Error	42	3487.5	83.02					
Total	47	8966.7						
F	=	MS _{treat} /	MS _{error}					
		u cati	enor					

SPSS provides significance levels (or you can look up tables)

Summary Table

<u>Source</u>	df	SS	MS	F	sig	
A (cons)	2	3332.3	1666.15	20.07	.000	
B (dist)	1	168.75	168.75	2.03	.161	
AB	2	1978.12	989.06	11.91	.000	*
Error	42	3487.5	83.02			
Total	47	8966.7				

the results of this anova show . . . a significant *main effect of pints consumed* <u>no main effect of distraction</u> a significant consumption x distraction interaction

no main effect of distraction

main effect of alcohol consumed

Alcohol consumed (pints)

disordinal interaction

next week: Simple effects & effect size
Readings:

skim Howell chapter 12
read Howell chapter 13.4
Field chapter 10.1 and 10.2

 tutes this week focus on visually identifying main effects and interactions