
Review
• Interpreting outliers

- Whether you regard an outlier as signal (i.e., as evidence for 

whatever you!re measuring) or disregarding it as noise (i.e, as 

evidence for something other than what you!re measuring – will 

depend on the context of the outlier.

• Regression diagnostics

- Homoscedasticity, multicollinearity, and singularity.

• A substantive change...

- ...is one that changes the interpretation of the relationship.

• Sequential (hierarchical) Regression

- Rather than being entered all at once, predictors enter the equation 

in groups specified by the researcher.

-              represents the improvement in R2 when the second 

predictor is added.              is tested with an F test, which is 

referred to as the F Change. A significant F Change means that the 

variables added in that step significantly improved the prediction.

R2
change

R2
change
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Review
• ANOVA via multiple regression

- Convert a categorical variable into multiple dichotomous variables, 

then do an ANOVA using multiple regression.

- Provides the "missing link! between the correlational and analysis 

of variance methods.

- Dummy coding of categorical variables

- Tests of significance

- Use of categorical variables in multiple regression

• Moderated Multiple Regression

- The case of the third variable

- Mediating or Moderating

- We can perform a 2x2 ANOVA by multiple regression

to test whether the effects of A on Y is moderated by B.

- That is, if the interaction contributes to the prediction (tested by              

in the same way as sequential multiple regression).

- A "simple slopes! analysis will verify that the pattern of relationships 

is what you expected them to be.

Social 

Support

Stress Health

Social 

Support

Stress Health

Mediating Moderating

R2
change
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Self Esteem

Shape 

Perception
Depression

Mediated Effects Model

Self Esteem

Shape 

Perception
Depression

Moderated Effects Model

3



Self Esteem

Shape 

Perception
Depression

Mediated Effects Model

“A variable may be considered a mediator to the 

extent to which it carries the influence of a given 

independent variable (IV) to a given dependent 

variable (DV). Generally speaking, mediation 

can be said to occur when: 

1. the IV significantly affects the mediator,

2. the IV significantly affects the DV in the 

absence of the mediator,

3. the mediator has a significant unique effect 

on the DV, and

4. the effect of the IV on the DV shrinks upon 

the addition of the mediator to the model.”

- Preacher & Leonardelli, 2001
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Self Esteem

Shape 

Perception
Depression

Mediated Effects Model

a b

c

Std. ErrorB Beta Sig.t

Standardized 
CoefficientsUnstandardized Coefficients

(Constant)

shpercep

1

.0004.158.417.6862.852

.0008.0232.99424.023

ModelModel

Coefficients
a

a. Dependent Variable: rses

Page 1

Std. ErrorB Beta Sig.t

Standardized 
CoefficientsUnstandardized Coefficients

(Constant)

shpercep

rses

1

.000-10.075- .723.063- .635

.019-2 .390- .172.431-1 .029

.00016.5072.28237.674

ModelModel

Coefficients
a

a. Dependent Variable: bdi

Page 1
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Self Esteem

Shape 

Perception
Depression

Moderated Effects Model

Another way of thinking about the influence of 

Self Esteem on the relationship between Shape 

Perception and Depression is to suggest that for 

those women with good Self Esteem, there will 

be little relationship between Shape Perception 

and Depression. However, for women with low 

Self Esteem, there will be a strong relationship 

between Shape Perception and Depression. 

This describes Self Esteem as moderating the 

relationship.
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Self Esteem

Shape 

Perception
Depression

Moderated Effects Model

Std. Error of 
the Estimate

Adjusted R 
SquareR SquareR

1

2 4.25599.651.663.814
b

4.27748.647.656.810
a

ModelModel

Model Summary

a. Predictors: (Constant), mod, idv

b. Predictors: (Constant), mod, idv, x

Page 1

R Square 
ChangeSig.FMean Squared f

Sum of 
Squares

Regression

Residual

Total

x

Regression

Residual

Total

Subset Tests

1

2

8 34302.720

18.1138 01449.078

.000
c

52.514951.21432853.642

.008.181
b

1.82032.968132.968

8 34302.720

18.2978 11482.047

.000
a

77.0811410.33722820.673

ModelModel

ANOVA
d

a. Predictors: (Constant), mod, idv

b. Tested against the full model.

c. Predictors in the Full Model: (Constant), mod, idv, x.

d. Dependent Variable: dv

Page 1

Depression ! Shape Perception, Self Esteem

explains 65.6% of the variability in Depression.

Depression ! Shape Perception, Self Esteem,
Self Esteem x Shape Perception

explains 66.3% of the variability in Depression.

We're testing the difference between 

these two models (i.e., the change in R2).
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Discriminant analysis

• Motivational example

• Schematic representation and 

purposes

• The simplest extension of the t-test - 

the two group example and linear 

composites

• Partitioning sums of squares

• An extension: Three groups and 

linear composites

• Discriminant ratios and eigenvalues

• Canonical correlations

• Significance tests in discriminant 

analysis

8



A Motivational Example

Imagine you are in prison and enrolled in fourth year. During your stay, you observe that 

there seem to be consistent differences between your fellow prisoners depending on the 

type of crime, e.g. people convicted of fraud tend to be liars etc. You need an Honours topic. 

So, you get permission to do a study. You convince 200 prisoners to fill out questionnaires. 

These include; The EPQ, the Hostility questionnaire, the Attitudes to criminals scale, the 

Rosenberg Self Esteem scale. Counting subscales, you end up with 11 variables. You get 

five groups of 20 prisoners convicted of Rape, Fraud, Murder, Victimless Crime, and Armed 

Robbery respectively. You also get 100 other prisoners convicted of crimes other than these. 

You want to describe differences between the groups. You call your friendly tutor at the 

University for advice on the appropriate data analysis.
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A Motivational Example

Groups N Variables (11 = p)

Rape 20 []  []  []  []  []  []  []  []  []  []  []

Fraud 20 []  []  []  []  []  []  []  []  []  []  []

Murder 20 []  []  []  []  []  []  []  []  []  []  []

Victimless crime 20 []  []  []  []  []  []  []  []  []  []  []

Armed Robbery 20 []  []  []  []  []  []  []  []  []  []  []

Other 100 []  []  []  []  []  []  []  []  []  []  []

Each [] is a column of 20 scores.

10



Questions of interest

• Given information about their personality, can we 
predict what sort of crime a person will commit?

• Can we describe the differences between existing 
criminals in terms of personality measures?

• More generally: Is there a relationship between 
personality factors and type of crime?

11



Overview
• Multiple continuous (or dichotomous) variables, are 

known as measured variables or discriminant 
variables.

- Number of discriminant variables = p

• A single categorical variable with multiple groups of 
cases, known as the grouping variable.

- Number of groups = k

Y ← X1, X2, . . . Xp
categorical

k levels
p continuous variables

←
categorical

k levels
p continuous variables

Y1, Y2, . . . Yp X

Predictive

Discriminant Analysis

Descriptive

Discriminant Analysis
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Linear Composites in Discriminant Analysis

Discriminant Analysis looks for a relationship between a 
categorical variable and a set of variables:

Xcat ← Y1, Y2, Y3

Pick some weights: w1, w2, w3

C1 = w1Y1 + w2Y2 + w3Y3

Create a linear composite:

Xcat ← C1

Resulting in a t-test or F-test:

Recall from Lecture 2...
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Hairy

Bald

Hair Density

(2 Levels)

Xcat

Entry

GPA

Y1

Gene 

Quality

Y2

Hand

Span

Y3←

←

Recall from Lecture 2...
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6 2 10

4 3 9

4 4 11

7 2 11

5 2 10

5.2 2.6 10.2

7 3 8

5 3 7

4 4 9

8 2 8

5 2 5

5.8 2.8 7.4

GPA

Gene 

Quality

Hand

Span

Mean

Mean

t-value -.64 -.37 3.61

By doing three t-tests (one for each 

variable), the three variables may be 

correlated.

So the interpretations of the t-tests 

are not independent (i.e., we aren!t 

properly assessing the effect of GPA 

and gene quality independently 

because GPA and gene quality may, 

in fact, be correlated.)

Another approach is to combine the 

three variables into a composite 

variable and perform a t-test on this 

composite variable.

But how do we combine the scores?

C1

C2

C3

w3w2w1

1 1 1

1 2 -1

1 1 -2*These weights are arbitrary in this example. 

Later, we!ll cover how to find optimal weights.

Recall from Lecture 2...
15



6 2 10

4 3 9

4 4 11

7 2 11

5 2 10

5.2 2.6 10.2

7 3 8

5 3 7

4 4 9

8 2 8

5 2 5

5.8 2.8 7.4

GPA

Gene 

Quality

Hand

Span

18 0 -12

16 1 -11

19 1 -14

20 0 -13

17 -1 -13

18 0.2 -12.6

18 5 -6

15 4 -6

17 3 -10

18 4 -6

12 4 -3

16 4 -6.2

C1 C2 C3

(1, 1, 1) (1, 2,−1) (1, 1,−2)

Mean

Mean

t-value -.64 -.37 3.61 1.49 -7.76 5.23

The goal here is to find the linear 

composite such that the t-value for 

the differences between the groups 

is as large as possible. The weights 

give the !relative importance" of the 

variables. The optimum weights 

depend essentially on the pattern of 

correlations among the variables.

Recall from Lecture 2...
16



Hairy

Bald

Not Quite Bald

With more than two groups, a t-value 

is no longer appropriate. Instead, an 

F-value is the appropriate index of 

between-group differences. The goal 

now would be to find the linear 

composite such that the F-value for 

the difference between groups is as 

large as possible.

Recall from Lecture 2...
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Research Questions  

• Is the overall relationship statistically significant and 
how strong is the relationship?

• What variables are individually important in 
separating (discriminating) between the groups?

A simple example
2 group Discriminant Analysis

Two groups of inmates:

- Group 1 = convicted for murder

- Group 2 = convicted for fraud

Two measured variables:

- a measure of intelligence

- a measure of aggression
(Y1)
(Y2)

X
categorical

2 levels

Y1Y2 ←
2 continuous 

variables

18



Group Intelligence Aggression

1 1.5 3.0

1 2.0 4.5

1 3.5 5.0

1 4.0 6.5

1 5.5 7.0

3.3 5.2

2 3.5 1.0

2 4.0 2.5

2 5.5 3.0

2 6.0 4.5

2 7.5 5.0

5.3 3.2

(X) (Y1) (Y2)

Murder

Fraud

t value -1.97 1.97

Mean

Mean
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0

2

4

6

8

0 2 4 6 8

Murder

Fraud

Aggression

(Y2)

Intelligence (Y1)

No significant 

difference between 

Groups 1 and 2 on Y2

No significant 

difference between 

Groups 1 and 2 on Y1

2 group Discriminant Analysis
Small differences between groups on Y1 and Y2
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0

2

4

6

8

0 2 4 6 8

Murder

Fraud

Aggression

(Y2)

Intelligence (Y1)

Big difference between 

Groups 1 and 2 on C1

2 group Discriminant Analysis
The combination, C1, maximises differences between groups

C 1
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• Eyeball approach suggests big group differences if we 
view the data from a new direction, between Y1 and Y2.

• Viewing the data from a new direction is the spatial 
equivalent of calculating a linear composite of Y1 and 
Y2.

• In this example, the new direction implies a linear 
composite with weights of -1 for Y1 and +1 for Y2.

This is an extension of the t-test to two measured variables. Earlier, 

the goal of discriminant analysis was stated as finding the linear 

composite such that the t-value for the difference between the groups 

is as large as possible. Another way to state the discriminant analysis 

problem is that we wish to find the direction or dimension in the space 

of the discriminant variables that maximally separates the groups.

2 group Discriminant Analysis
The combination, C1, maximises differences between groups
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Group Composite

1 1.5

1 2.5

1 1.5

1 2.5

1 1.5

2 -2.5

2 -1.5

2 -2.5

2 -1.5

2 -2.5

(X)

Murder

Fraud

(C1 : −1,+1)

23



-3.0

-1.5

0

1.5

3.0

0 1 2

Murder

Fraud

Note that the correlation between X, the grouping variable, and C1, the linear 

composite, is -0.972. This is a point-biserial correlation. Later it will be referred to 

as a canonical correlation. The square of this correlation gives the proportion of 

variance in the linear composite accounted for by the grouping variable, (94.5%).  

C1 summarises the information in Y1 and Y2 in such a way that maximises the 

canonical correlation.

X

C1

r = −.972
r2 = 94.5%

2 group Discriminant Analysis
Scatterplot of X and C1

Group Composite

1 1.5

1 2.5

1 1.5

1 2.5

1 1.5

2 -2.5

2 -1.5

2 -2.5

2 -1.5

2 -2.5

(X)

Murder

Fraud

(C1 : −1,+1)
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First, reconsider multiple 

regression with 2 predictors

25



The predictors are used to create a 

linear composite

Linear Composite

(or predicted scores 

on the criterion)

Criterion

R2
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2-Group Discriminant Analysis

First discriminant 

variable

Second discriminant 

variable

Between-group 

variance of the 

grouping variable

27



Linear Composite

(or the discriminant 

function)

Squared canonical 

correlation
(R2

C)

The predictors are used to create a 

linear composite

Between-group 

variance of the 

grouping variable
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To summarise so far…

• 2 group discriminant analysis involves producing a linear 
composite that distinguishes between the groups.

• Finding the best linear composite is a complex process.

• The best linear composite 

- explains the most between-groups variance.

- maximises the differences between the groups.

- maximises the t-value or F-value on the linear composite.

- maximises the ratio of 

• So we want to find a set of weights which maximises the 
value of

- This involves partitioning the variance of the linear composite, C1 which can be 

represented in matrix notation.

SSbetween on C1

SSwithin on C1

SSbetween on C1

SSwithin on C1

29



Calculating the Total SSCP from raw data

Y

Y1 Yp
1

N

Yd

Y1 Yp
1

N

Deviations 

from the mean

Y1 Yp
1

p

SSy1

SSyp

SCP. . .
Total Sums of Squares 

and

Cross Products Matrix

Y ′
dYd
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Partitioning the Total SSCP matrix

=

Y1 Yp
1

p

. . .
Total Sums of Squares 

and

Cross Products Matrix

SCPTy1ypSSTy1

SSTyp

T =

Between Groups Sums of Squares 

and

Cross Products Matrix

Y1 Yp
1

p

. . .
SSByp

SSBy1 SCPBy1yp

B = +
Within Groups Sums of Squares 

and

Cross Products Matrix

SSWyp

SSWy1 SCPWy1yp

Y1 Yp
1

p

. . .W =

31



In matrix notation...
the weights used to form the linear 
composite (a vector of weights).

-  also known as the eigenvector.

v =

SSbetween on C1 = v′Bv
SSwithin on C1 = v′Wv

so now we are looking for a vector of weights that 
maximises the value of:

SSbetween on C1

SSwithin on C1

=
v′Bv
v′Wv

= λ

λ = the discriminant ratio or an eigenvalue.

Applying weights to both the between and within 
groups variability matrices creates a linear composite:
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Within Groups Sums of Squares 

and

Cross Products Matrix

SSWyp

SSWy1 SCPWy1yp

Y1 Yp
1

p

. . .

λ =

Between Groups Sums of Squares 

and

Cross Products Matrix

Y1 Yp
1

p

. . .
SSByp

SSBy1 SCPBy1yp

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

Unknown 

Eigenvalue
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Within Groups Sums of Squares 

and

Cross Products Matrix

SSWyp

SSWy1 SCPWy1yp

Y1 Yp
1

p

. . .

λ =

Between Groups Sums of Squares 

and

Cross Products Matrix

Y1 Yp
1

p

. . .
SSByp

SSBy1 SCPBy1yp

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

Unknown 

Eigenvalue

The eigenvalue,   , is a measure of the ratio of 
between group variability to within group variability.

λ

The weights,   , the eigenvector, are called the 
discriminant function coefficients and are one 
measure of the relative importance of the discriminant 
variables to the separation of the groups.

v
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Another example
3 group Discriminant Analysis

Three groups of inmates:

- Group 1 = convicted for murder

- Group 2 = convicted for fraud

- Group 3 = convicted for armed robbery

Two measured variables:

- a measure of intelligence

- a measure of aggression
(Y1)
(Y2)

X
categorical

3 levels

Y1Y2 ←
2 continuous 

variables

0

2

4

6

8

0 2 4 6 8

Aggression

(Y2)

Intelligence (Y1)

32

1

0

2

4

6

8

0 2 4 6 8

Aggression

(Y2)

Intelligence (Y1)

C 1

32

1

C 1

C
2

Find direction that 

captures the 

biggest differences

Find direction that 

captures the 

remaining differences
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Another example
3 group Discriminant Analysis

0

2

4

6

8

0 2 4 6 8

Aggression

(Y2)

Intelligence (Y1)

32

1

0

2

4

6

8

0 2 4 6 8

Aggression

(Y2)

Intelligence (Y1)

32

1

C 1 C 1

C
2

Find direction that 

captures the 

biggest differences

Find direction that 

captures the 

remaining differences

Given k groups and p discriminating 

variables, this "extraction! of 

discriminant functions continues until 

the number of discriminant functions 

is (k-1) or p, whichever is the smaller.

Three groups of inmates:

- Group 1 = convicted for murder

- Group 2 = convicted for fraud

- Group 3 = convicted for armed robbery

Two measured variables:

- a measure of intelligence

- a measure of aggression
(Y1)
(Y2)
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1st Linear Composite

(or discriminant 

function)

Between-group 

variance of the 

grouping variable

3 group discriminant analysis

R2
C1

2nd Linear Composite

(or discriminant 

function)

R2
C2
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Within Groups Sums of Squares 

and

Cross Products Matrix

SSWyp

SSWy1 SCPWy1yp

Y1 Yp
1

p

. . .

λ =

Between Groups Sums of Squares 

and

Cross Products Matrix

Y1 Yp
1

p

. . .
SSByp

SSBy1 SCPBy1yp

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

v′

Unknown 

Eigenvectors

v

Unknown 

Eigenvectors

Unknown 

Eigenvalue

Earlier, we expressed the ratio of the between to 
within sums of squares in terms of the weights for 
the linear composite:

Just knowing this formula does not allow us to 
find the weights that maximise the ratio.

λ
The goal here is to maximise this discriminant 
ratio, this eigenvalue   . How?

=
v′Bv
v′Wv
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We could use trial and error, but the use of calculus 
will give us an analytic solution...

The equation for the first discriminant function is:

(W−1B)v1 = λ1v1

which can be rewritten as

(W−1B− λ1I)v1 = 0

For the second discriminant function:

(W−1B− λ2I)v2 = 0

The matrices     and     are known. The scalars     and     (the first and second 

eigenvalues) as well as      and     (the first and second eigenvectors) are unknown 

and need to be calculated. We also fix      and      to be independent of each other by 

the constraint:                . There is an eigen equation for each discriminant function. 

W B λ1 λ2

v1 v2

v1 v2

v′
1v2 = 0

Eigenvectors and eigenvalues are also referred to as characteristic vectors (in 

German, “eigen” means “specific of ” or “characteristic of ”). The set of eigenvalues of 

a matrix is also called its spectrum. (Abdi, 2007)

39



The eigenvalue (λ)
Why the name "eigenvalue!? Consider a simplified 
form of the eigenvalue equation:

Av = λv
where     is a matrix, and    is a scalar (a number). 
What if the equation was a scalar equation              ?
This would imply that          . However, the 
eigenvalue equation is a matrix equation, so           .

A λ
av = λv

a = λ
A != λ

In this sense,    has a special relationship with    , as 
it is often referred to as the "singular value! of the 
matrix    . The process of finding the eigenvalues of 
a matrix is called the "singular value decomposition!.

λ A

A
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The eigenvalue (λ)
In discriminant analysis, we!re decomposing the 
relationship between the grouping variable (X) and 
the discriminant variables (Ys).

Y1, Y2, . . . Yp ← X

• An eigenvalue is a measure of concentration 
of shared variance between the grouping 
variable and a linear combination of the 
multiple discriminant variables.

• Multivariate test statistics are all computed as 
functions of these eigenvalues.

• The eigenvalue can be used to calculate the 
squared canonical correlation.
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Canonical Correlations

The canonical correlation for a discriminant 
function is useful because it has a meaning just 
like a multiple correlation in multiple regression.  
There is one for each discriminant function and can 
be calculated in a number of ways.

The canonical correlation:

is a function of the eigenvalues.  That is, it 
measures the "concentration of shared variance! in 
a more interpretable form. 

RCj =

√
λj

(1 + λj)
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Canonical Correlations
Interpretation

Each discriminant function is related to the grouping variable:

← X
categorical

3 levels

Y1Y2

2 continuous 

variables

C1

Composite 

variable

← X
categorical

3 levels

X1X2X3C1

Composite 

variable

←
3 dichotomous

variables

This allows a normal regression to be performed.
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X1X2X3

Canonical Correlations
Interpretation

C1

Composite 

variable

←
3 dichotomous

variables

This allows a normal regression to be performed.

• the      from this regression is the squared 
canonical correlation.

•       is the proportion of variance of the 
discriminant function that!s predictable from 
group membership.

•       is the proportion of between-group 
variability accounted for by the discriminant 
function.

R2

R2
C

R2
C
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Canonical Correlations
Interpretation

Be sure not to confuse        with the "% variance! 
reported in SPSS.

R2
Cj

% variance

λj

(
∑

λj)

How well one discriminant 
function discriminates 
between groups in 
comparison to the all other 
discriminant functions in 
the analysis 

R2
Cj

√
λj

(1 + λj)

How much of the between 
groups variability is 
accounted for by that 
function.
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Canonical Correlations
Interpretation

• Canonical Correlations explain how each 
discriminant function performs in the analysis.

• Canonical Correlations do not provide an 
overall measure of statistical significance like 
an R in multiple regression.

• Wilk!s Lambda (and Bartlett!s V) provides 
measures of overall significance.

Significance testing in Discriminant Analysis

- testing the strength of the overall relationship.

- testing for the number of significant discriminant functions.
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Testing the strength of the 

overall relationship

• Wilk!s Lambda       measures the overall 
relationship between the grouping variable and 
the predictors.

• Wilk!s Lambda summarises the information from 
all discriminant functions.

• You can think about the overall expression:

• in three different ways:

(Λ)

and       are the determinants of      and    .|W| |T| TW

=
|W|
|T|Λ =

|W|
|W + B| =

r∏

j=1

1
1 + λj

=
r∏

j=1

(
1−R2

Cj

)
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Λ = =
|W|

|W + B|
|W|
|T|

Testing the strength of the 

overall relationship

=
r∏

j=1

1
1 + λj

=
r∏

j=1

(
1−R2

Cj

)

1. In terms of within and between group variance.

- This is similar to the reciprocal of an F value:

- The bigger the effects of differences between groups the smaller the 

value of    .

(
1
F

)

Λ

and       are the determinants of      and    .|W| |T| TW
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r∏

j=1

1
1 + λj

=
|W|
|T|Λ =

|W|
|W + B| =

r∏

j=1

(
1−R2

Cj

)

Testing the strength of the 

overall relationship

2. In terms of eigenvalues

-      is the "discriminant ratio! for a discriminant function.

-      can be considered as summarising the "discriminant ratios! for all 

discriminant functions.

=

(λ)
λj

Λ
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r∏

j=1

(
1−R2

Cj

)
=

|W|
|T|Λ =

|W|
|W + B| =

r∏

j=1

1
1 + λj

Testing the strength of the 

overall relationship

3. In terms of 1 minus the squared canonical 
correlations for each function.

- it measures the lack of fit of the linear model.

- Compare with               from multiple regression.

=

(1−R2)

However, the distribution of Wilk!s Lambda is not as friendly or useable as 

a t or F distribution. This is because     doesn!t have a convenient or easily 

accessible distribution that can be looked up in tables. So Bartlett worked 

out the transformation that enables the chi-square distribution to be used.

Λ

Bartlett!s V
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Testing the strength of the 

overall relationship
Bartlett!s V

V = −
(

N − 1− (p + k)
2

)
ln (Λ)

where

the total number of casesN =
ln = the natural log

V is distributed approximately χ
2

with               degrees of freedom.p(k − 1)

In the MANOVA and GLM procedures, SPSS give the results of other multivariate 

tests of significance. These are Roy!s   , Pillai!s V, and Hotelling!s T.  Haase and 

Ellis (1987) state that Roy!s is the most powerful when there is a very strong first 

discriminant function. If the "variance! is diffused across the discriminant functions, 

then the other three, including Wilk!s    , are about equally powerful.

θ

Λ
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Testing for the number of 

significant discriminant functions

• The purpose is to find the smallest number of 
functions that adequately describe differences 
between the groups.

• A Bartlett!s V is associated with each 
discriminant function.

• The components corresponding to the first, 
second, etc. functions are subtracted from V 
and the remainder is tested for significance.

• As soon as the remainder, after removing the 
first s functions, becomes "nonsignificant! at 
some alpha level, then we conclude that only 
the first s functions are significant.

52



• What are the available measures of the 
importance of  individual predictors?  

• Like multiple regression this is not an easy 
question to answer because there are many 
different statistics suggested.

• In this course we will consider five of them:

- Univariate F-Ratios

- F-TO-REMOVE statistics

- Structure Coefficients

- Standardised Discriminant Function Coefficients

- Relative Weights

Relative importance of the 

individual predictor variables

These will be defined later and will be discussed in the 

context of an interpretation of a discriminant analysis.
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• Like multiple regression, there are 
several types of discriminant analysis: 

- Direct

- Stepwise

- Hierarchical

Carl Huberty, in a talk to the Psychology Department, 

stated emphatically that stepwise methods were not 

generally appropriate (he offered the following diagram 

to be displayed). We cover exclusively the direct or 

standard method. The hierarchical method is analogous 

to hierarchical or sequential multiple regression. 

Thompson (1995) reiterates this theme offering very 

good reasons for NOT using stepwise methods.

Stepwise Methods

NO Stepwise Methods
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Summary

←
categorical

k levels
p continuous variables

Y1, Y2, . . . Yp X Descriptive

Discriminant Analysis

(MANOVA)

Discriminant Analysis describes the effects of some 
grouping variable (with k levels) on a set of p continuous 
discriminant (response) variables.

In our motivational example, we were looking at whether we could describe the 

difference between convicted murderers and fraudsters on the basis of personality 

measures aimed at intelligence and aggression?

We!re interested in two research questions:

1. Is the overall relationship statistically significant and how strong is the 

relationship?

2. What variables are individually important in separating (discriminating) 

between the groups?
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Summary
Discriminant Analysis involves producing a linear 
composite that distinguishes between the groups.

These composites are created so that the between 
group (k groups) means on these composites are as 
different as possible.

Eigenvalues      are a measure of how well each discriminant function is able to 

maximally separate the groups.

Eigenvectors      are the weights applied to the variables to create these linear 

composites.

The Squared Canonical Correlation           estimates the proportion of between 

group variability accounted for by the jth discriminant function.

Wilk!s Lambda      provides us with an overall test and can be considered as 

summarising the "discriminant ratios! for all discriminant functions.

Bartlett!s V provides us with a transformation of Wilk's Lambda that uses a 

distribution.

(λ)

(v)

(R2
Cj)

(Λ)

χ2
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