## Readings

T\&F: Chapters 1, 2, 3 and 5


## Linear Composites

A variable created by combining several existing variables.

- each existing variable is given a weight.
- each variable is multiplied by its weight.
- weighted variables are added together to form a new variable.
- different weights will produce different linear composites.
- Example: Grade Point Average

Voute Envery 1* $^{*}$ 'Larg' Medius g . Auric" $\mathrm{g} \cdot \square$ E ${ }_{\text {Aur }}$ $\square$ né le.............. a dep边 Long' Coudte g.





,
(6) 51810





## Fluctuating Asymmetry (FA)

## Composite $=$ FA

"Results indicated that normally cycling (non-pill using) women near the peak fertility of their cycle tended to prefer the scent of shirts worn by symmetrical men."

# The Scent of Symmetry: A Human Sex Pheromone that Signals Fitness? 

Randy Thornhill
Department of Biology, The University of New Mexico, Albuquerque, New Mexico
Steven W. Gangestad
Department of Psychology, The University of New Mexico, Albuquerque, New Mexico

A previous study by the authors showed that the body scent of men who have greater body bilateral symmetry is rated as more attractive by normally ovulating (non-pillusing) women during the period of highest fertility based on day within the menstrual cycle. Women in low-fertility phases of the cycle and women using hormone-based contraceptives do not show this pattern. The current study replicated these findings with a larger sample and statistically controlled for men's hygiene and other factors that were not controlled in the first study. The current study also examined women's scent attractiveness to men and found no evidence that men prefer the scent of symmetric women. We propose that the scent of symmetry is an honest signal of phenotypic and genetic quality in the human male, and chemical candidates are discussed. In both sexes, facial attractiveness (as judged from photos) appears to predict body scent attractiveness to the opposite sex. Women's preference for the scent associated with men's facial attractiveness is greatest when their fertility is highest across the menstrual cycle. The results overall suggest that women have an evolved preference for sires with good genes. © 1999 Elsevier Science Inc.

KEY WORDS: Androgens; Androstenone; Androstenol; Developmental instability; Fluctuating asymmetry; Handicap theory; Mate choice; Menstrual cycle; Pheromones; Sexual selection; Signaling.


Evolution and Human Behavior 20: 175-201 (1999) © 1999 Elsevier Science Inc. All rights reserved. 655 Avenue of the Americas, New York, NY 10010


## Fluctuating Asymmetry (FA)

## Composite $=$ FA

"Results indicated that normally cycling (non-pill using) women near the peak fertility of their cycle tended to prefer the scent of shirts worn by symmetrical men."
"Women with partners possessing low FA and their partners reported significantly more copulatory female orgasms than were reported by women with partners possessing high FA and their partners."
"...there is a real, common, causal link between bodily asymmetry and lowered IQ."
"Breast asymmetry is likely to be a predictor of, rather than the effect of breast cancer."
"Subjects who had few or no sperm in their ejaculates tended to have high FA."
"We found the [Beck Depression Index, BDI] was positively related to fluctuating asymmetry in men but not women"
"We conclude that symmetry in traits such as nostrils and ears indicates good running ability. It may therefore be useful in predicting the future potential of young athletes."
$C=\sum w_{i} Y_{i}=w_{1} Y_{1}+w_{2} Y_{2}+\cdots+w_{p} Y_{p}$ $Y_{1}, Y_{2}$, etc. are scores on existing variables $w_{1}, w_{2}$, etc. are weights for each variable

$Y_{2}=28.1$

$Y_{3}=7.3$
$w_{2}=2$
$w_{3}=-1$
$C=(1 \times 178.4)+(2 \times 28.1)+(-1 \times 7.3)$
$C=227.3 \longleftarrow$ Supervariable $=$ Stature


| Person | Aspect 1 <br> $Y_{1}$ | Aspect 2 <br> $Y_{2}$ | Aspect 3 <br> $Y_{3}$ |
| :---: | :---: | :---: | :---: |
| 1 | 178.4 | 28.1 | 7.3 |
| 2 | 167.0 | 24.7 | 6.7 |
| 3 | 170.2 | 27.6 | 5.8 |
| 4 | 187.9 | 29.3 | 8.5 |
| 5 | 175.2 | 30.9 | 6.2 |


| $C_{1}$ | $C_{2}$ |
| :---: | :---: |
| $(1,2,-1)$ | $(2,-2,1)$ |
| 227.3 | 307.9 |
| 209.8 | 291.3 |
| 219.6 | 291.1 |
| 237.8 | 325.8 |
| 230.9 | 294.8 |

## Linear composites are used to convert multivariate relationships into bivariate relationships.

For example, start with a multivariate relationship:

$$
Y \leftarrow X_{1}, X_{2}, X_{3}
$$

Create a linear composite:

$$
X_{1}, X_{2}, X_{3} \Rightarrow C_{1}
$$

resulting in a bivariate relationship:

$$
Y \leftarrow C_{1}
$$

## Properties of linear composites

- In data analysis, linear composites need to have specific properties.
- Weights are calculated mathematically to produce a linear composite with the right properties.
- Different multivariate methods use linear composites with different properties.


## Linear Composites in Discriminant Analysis

Discriminant Analysis looks for a relationship between a categorical variable and a set of variables:

$$
X_{c a t} \leftarrow Y_{1}, Y_{2}, Y_{3}
$$

Pick some weights: $w_{1}, w_{2}, w_{3}$

Create a linear composite:

$$
C_{1}=w_{1} Y_{1}+w_{2} Y_{2}+w_{3} Y_{3}
$$

Resulting in a t-test or F-test:

$$
X_{c a t} \leftarrow C_{1}
$$

## Bald



Hairy


Hair Density
(2 Levels)

Entry
GPA

Gene
Quality
Hand
Span
$Y_{2}$
$Y_{3}$



## Bald

With more than two groups, a t-value is no longer appropriate. Instead, an F-value is the appropriate index of between-group differences. The goal now would be to find the linear composite such that the F-value for the difference between groups is as large as possible.

## Not Quite Bald



## Linear Composites in Multiple Regression

Multiple Regression looks for a relationship between a continuous variable and a set of variables:

$$
Y_{\text {cont }} \leftarrow X_{1}, X_{2}, X_{3}
$$

Pick some weights: $a_{1}, a_{2}, a_{3}$

Create a linear composite:

$$
C_{1}=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}
$$

Resulting in a correlation:

$$
Y_{\text {cont }} \leftarrow C_{1}
$$

Final Honours
Grade

Entry GPA

Time to Run 5 kilometres
$X_{1}$
$X_{2}$
$X_{3}$


|  | Final Honours Grade | Entry GPA | Time to Run 5 km | Daily Caffeine Intake | $\begin{gathered} C_{1} \\ (4,2,3) \end{gathered}$ | $\begin{gathered} C_{2} \\ (-4,2,3) \end{gathered}$ | $\begin{gathered} C_{3} \\ (1,1,1) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 87.3 | 6.9 | 19.0 | 476.5 | 1495.1 | 1439.7 | 502.4 |
|  | 72.4 | 6.4 | 43.4 | 663.3 | 2102.5 | 2051.1 | 713.2 |
|  | 56.1 | 5.2 | 28.6 | 383.9 | 1229.4 | 1188.1 | 417.6 |
|  | 66.2 | 6.1 | 41.0 | 546.8 | 1746.9 | 1697.8 | 593.9 |
|  | 53.0 | 6.0 | 45.7 | 422.0 | 1381.4 | 1333.4 | 473.7 |
|  | 61.9 | 6.9 | 38.8 | 473.0 | 1524.3 | 1469.0 | 518.7 |
| Mean$r$ | 66.2 | 6.3 | 36.1 | 494.3 | 1579.9 | 1529.9 | 536.6 |
|  |  | 0.39 | مrـمـ | 0.46 | 0.41 | 0.4 | 0.38 |

## Linear Composites in Factor Analysis

Factor Analysis looks for a single variable that summaries multiple variables, without losing too much information (variance).

$$
V_{1}, V_{2}, V_{3}
$$

Pick some weights: $a_{1}, a_{2}, a_{3}$

Create a linear composite:

$$
C_{1}=a_{1} V_{1}+a_{2} V_{2}+a_{3} V_{3}
$$

Resulting in a single summary variable: $C_{1}$
$C_{1}$ has a Variance that captures the 'information'.

## Measures that 'define’ success...

Typing
Speed
$V_{1}$

## Emotional <br> Stability

$V_{2}$
...but how do we know whether we have a 'good' measure?
One criterion for a 'good' variable is that is serves to distinguish between cases.


Good


Not so good

| Typing <br> Speed | Emotional <br> Stability | Chess <br> Experience |
| :---: | :---: | :---: |
| 2 | 4 | 5 |
| 1 | 7 | 2 |
| 9 | 0 | 5 |
| 6 | 2 | 4 |
| Variance | 11.5 | 8.2 |

By computing the variance for each measure, the three measures may be correlated.

So the interpretations of the measures are not independent.

Another approach is to combine the three measures into a composite and compute the variance of the composite variable.

But how do we combine the scores?

|  |  | $a_{1}$ | $a_{2}$ | $a_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $C_{1}$ | 1 | 1 | -1 |
|  | $C_{2}$ | 1 | -1 | 1 |
| *Note that the variance of the linear composite can get large if we change the magnitude of the weights. So the weights are constrained so that their sums of squares are equal. | $\simeq C_{3}$ | 1 | 1 | 1 |


|  | Typing Speed | Emotional Stability | Chess Experience | $\begin{gathered} C_{1} \\ (1,1,-1) \end{gathered}$ | $\begin{gathered} C_{2} \\ (1,-1,1) \end{gathered}$ | $\begin{gathered} C_{3} \\ (1,1,1) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 5 | 1 | 3 | 11 |
|  | 1 | 7 | 2 | 6 | -4 | 10 |
|  | 9 | 0 | 5 | 4 | 14 | 14 |
|  | 6 | 2 | 4 | 4 | 8 | 12 |
|  | 2 | 6 | 3 | 5 | -1 | 11 |
| Variance | 11.5 | 8.2 | 1.7 | 3.5 | 51.5 | 2.3 |
|  | he goal h omposite f the scor the linea ossible va mportant epend es correlation | is to find th ish that the is a large a composite h ance. This g tor'. The opt ntially on the among the var |  <br> e linear scatter (spread) possible. Th as the largest ves the 'mos imum weights pattern of ariables. |  |  |  |

The 'trick' used to handle multiple variables is to 'add' them up to form one variable (the linear composite) and then to perform the familiar univariate analyses.

In data analysis, linear composites are created with specific properties in order to maximise something:

- in discriminant analysis, create linear composites to maximise group differences (or a t-value or an F-value).
- in multiple regression, create linear composites to maximise a correlation.
- in factor analysis, create linear composites to maximise a variance.


## Questions

1. Explain how linear composites are used in multiple regression. Could simple correlations between the criterion and the predictors give the same information as using a linear composite?
2. Why is variance an important concept?
3. Explain why separate univariate (bivariate) analyses are not appropriate for handling multivariate data.
4. Why is the linear composite formed to maximise something? Why not just have arbitrary combinations of the measured variables?
5. Using the body measurement example above (e.g., 178.4, 28.1,..., 6.2) apply the weights used in the factor analysis example to see which of the three linear composites best maximised the variance.

## Multiple Regression: An Overview

## Major themes in multiple regression:

- Data $=$ Model + Residual
- The model is specified by the weights for the linear combination of variables.
- Sums of squares and variances can be partitioned.
- Estimating the model for the data.
- How well does the model fit the data?
- Statistical testing
- Can we trust the model?


## Motivational Example Segrin \& Nabi (2002)

What's the relationship between watching television, holding idealistic expectations about marriage, and intentions to marry?


## $\mathrm{N}=285$ never-married University students.

| Person | overall tv <br> viewing | romantic tv <br> viewing | idealistic <br> marriage <br> expectation | intention to <br> marry | Age | Gender |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.56 | 4.75 | 3.95 | 4.5 | 18 | F |
| 2 | 4.61 | 2.34 | 2.87 | 3.01 | 22 | M |
| $\vdots$ |
| 285 | 1.41 | 1.05 | 1.53 | 1.25 | 44 | M |


| Intentions to | $\leftarrow$ | Television | Holding idealistic |
| :---: | :---: | :---: | :---: |
| Marry | $\leftarrow$ | $X_{1}$ | expectations about marriage |
| $Y$ | $\leftarrow$ | $X_{2}$ |  |

Results from regression and path analyses indicate that, although overall television viewing has a negative association with idealistic marriage expectations, viewing of romantic genre programming (e.g., romantic comedies, soap operas) was positively associated with idealistic expectations about marriage. Further, a strong and positive association between these expectations and marital intentions was evidenced.

## Bivariate

Simple Linear Regression

$$
Y \leftarrow X
$$

Independent Groups t-test
$Y \leftarrow X$

Two variable Correlation $Y \leftrightarrow X$

## Multivariate

Two Predictor Multiple Regression $Y \leftarrow X_{1}, X_{2}$

Many Predictor Multiple Regression

## Correlation

A correlation (r) represents the degree of a linear relationship between two variables, ranging from -1 to +1 .

It forms the basis for all other multivariate methods in this course.


> a low correlation
> $r=.3$
> $9 \%$ overlapping variance

a moderate correlation

$$
r=.8
$$

64\% overlapping variance



| $X$ | $Y$ |
| :---: | :---: |
| 4.61 | 9.22 |
| 4.65 | 9.29 |
| 5.12 | 10.25 |
| 5.28 | 10.56 |
| 5.86 | 11.73 |
| 6.42 | 12.84 |
| 4.56 | 9.12 |
| 6.54 | 13.07 |
| 4.39 | 8.78 |
| 3.63 | 7.26 |
| 5.16 | 10.32 |
| 5.68 | 11.37 |
| 4.77 | 9.54 |
| 5.49 | 10.98 |
| 3.91 | 7.82 |
| 5.45 | 10.90 |
| 3.34 | 6.68 |
| 4.00 | 8.01 |
| 3.91 | 7.82 |
| 7.22 | 14.45 |



$Y=4+1.2(3)=7.6 \quad X$


## The notion of modelling the data

## $Y \leftarrow X$

$$
Y_{i}=a+b X_{i}+e_{i}
$$

$$
Y_{i}=Y_{i}^{\prime}+e_{i}
$$

Actual Score $=$ Predicted from Model + Error

Actual Score $=$ Predicted Score + Residual

Actual Score $=$ Regression + Residual

## In general:

## The notion of modelling the data

## $Y \leftarrow X_{1}, X_{2}$

$Y_{i}=a+b_{1} X_{1 i}+b_{2} X_{2 i}+e_{i}$
$Y_{i}=Y_{i}^{\prime}+e_{i}$

Actual Score $=$ Predicted from Model + Error

Actual Score $=$ Predicted Score + Residual

Actual Score $=$ Regression + Residual

## In general:

## The general situation

$$
\begin{aligned}
& Y=X_{1}, X_{2} \ldots X_{p}+e \\
& Y=Y^{\prime}+e
\end{aligned}
$$

$Y^{\prime}$ is a linear composite and represents the model of the data

## DATA = MODEL + RESIDUAL



These best fitting regression coefficients produce a prediction equation for which squared differences between $Y$ and $Y^{\prime}$ are at a minimum.

Because the squared error of prediction $\left(Y-Y^{\prime}\right)^{2}$ are minimised, this solution is called a least-squares solution.

| $X_{1}$ | $X_{2}$ | $Y$ | $Y^{\prime}$ | $Y-Y^{\prime}$ | $\left(Y-Y^{\prime}\right)^{2}$ | $Y-\bar{Y}$ | $(Y-\bar{Y})^{2}$ | $Y^{\prime}-\bar{Y}$ | $\left(Y^{\prime}-\bar{Y}\right)^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.10 | 5.06 | 9.81 | 9.26 | 0.54 | 0.30 | -0.19 | 0.04 | -0.74 | 0.55 |
| 5.34 | 4.09 | 8.44 | 9.02 | -0.58 | 0.33 | -1.56 | 2.42 | -0.98 | 0.96 |
| 5.45 | 4.46 | 10.97 | 9.65 | 1.32 | 1.74 | 0.97 | 0.95 | -0.35 | 0.12 |
| 4.39 | 3.97 | 7.56 | 7.99 | -0.43 | 0.19 | -2.44 | 5.97 | -2.01 | 4.04 |
| 4.30 | 4.01 | 7.69 | 7.96 | -0.26 | 0.07 | -2.31 | 5.31 | -2.04 | 4.18 |
| 5.92 | 3.37 | 9.06 | 8.54 | 0.52 | 0.27 | -0.94 | 0.89 | -1.46 | 2.13 |
| 4.87 | 5.71 | 10.02 | 10.88 | -0.86 | 0.74 | 0.02 | 0.00 | 0.88 | 0.78 |
| 3.86 | 5.33 | 9.13 | 9.42 | -0.29 | 0.08 | -0.87 | 0.76 | -0.58 | 0.34 |
| 5.03 | 5.59 | 11.69 | 10.86 | 0.83 | 0.69 | 1.69 | 2.87 | 0.86 | 0.74 |
| 5.06 | 5.89 | 9.34 | 11.31 | -1.97 | 3.88 | -0.66 | 0.43 | 1.31 | 1.73 |
| 5.51 | 3.85 | 7.69 | 8.83 | -1.14 | 1.29 | -2.31 | 5.32 | -1.17 | 1.37 |
| 5.91 | 5.89 | 12.75 | 12.10 | 0.65 | 0.42 | 2.75 | 7.55 | 2.10 | 4.41 |
| 2.18 | 4.80 | 7.63 | 7.13 | 0.50 | 0.25 | -2.37 | 5.61 | -2.87 | 8.21 |
| 4.47 | 5.73 | 11.33 | 10.56 | 0.77 | 0.60 | 1.33 | 1.77 | 0.56 | 0.31 |
| 6.19 | 6.54 | 12.78 | 13.28 | -0.50 | 0.25 | 2.78 | 7.73 | 3.28 | 10.73 |
| 6.81 | 5.35 | 12.01 | 12.16 | -0.15 | 0.02 | 2.01 | 4.03 | 2.16 | 4.67 |
| 4.16 | 4.43 | 7.76 | 8.43 | -0.66 | 0.44 | -2.24 | 5.01 | -1.57 | 2.48 |
| 4.93 | 3.71 | 8.53 | 8.11 | 0.42 | 0.17 | -1.47 | 2.17 | -1.89 | 3.58 |
| 5.73 | 4.92 | 11.42 | 10.55 | 0.88 | 0.77 | 1.42 | 2.03 | 0.55 | 0.30 |
| 5.78 | 7.29 | 14.37 | 13.96 | 0.41 | 0.17 | 4.37 | 19.13 | 3.96 | 15.71 |


| $\sum$ | 100.00 | 100.00 | 200.00 | 200.00 | 0.00 | 12.67 | 0.00 | 80.00 | 0.00 | 67.33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MEAN | 5.00 | 5.00 | 10.00 | 10.00 | 0.00 | 0.63 | 0.00 | 4.00 | 0.00 | 3.37 |

$S S_{r e g} \quad S S_{\text {res }}$

$S S_{r e g}=\sum\left(Y^{\prime}-\bar{Y}\right)^{2} \quad S S_{r e s}=\sum\left(Y-Y^{\prime}\right)^{2}$
$S S_{Y}=\sum(Y-\bar{Y})^{2}$


$$
R^{2}=\frac{S S_{r e g}}{S S_{Y}}=\frac{67.33}{80}=.84
$$

|  |  | $\mathbf{R}_{i i}$ |  | $\begin{gathered} \mathbf{R}_{i y} \\ Y \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $X_{1}$ | $X_{2}$ |  |
|  | $X_{1}$ | 1 | 0.2 | 0.6 |
|  | $X_{2}$ | 0.2 | 1 | 0.8 |
| $\mathbf{R}_{y i}$ | $Y$ | 0.6 | 0.8 | 1 |

$\mathbf{R}_{i i}=\left[\begin{array}{cc}1 & .2 \\ .2 & 1\end{array}\right] \quad \mathbf{R}_{i i}^{-1}=\left[\begin{array}{cc}1.042 & -0.208 \\ -0.208 & 1.042\end{array}\right]$
$\mathbf{B}_{i}=\mathbf{R}_{i i}^{-1} \mathbf{R}_{i y}$
$\mathbf{B}_{i}=\left[\begin{array}{cc}1.042 & -0.208 \\ -0.208 & 1.042\end{array}\right]\left[\begin{array}{l}.6 \\ .8\end{array}\right]=\left[\begin{array}{c}.458 \\ .708\end{array}\right]$
$\mathbf{R}^{2}=\mathbf{R}_{y i} \mathbf{B}_{i}$
$\mathbf{R}^{2}=\left[\begin{array}{ll}.6 & .8\end{array}\right]\left[\begin{array}{l}.458 \\ .708\end{array}\right]$
$\mathbf{R}^{2}=0.84$

| $X_{1}$ | $X_{2}$ | $Y$ |
| :---: | :---: | :---: |
| 4.10 | 5.06 | 9.81 |
| 5.34 | 4.09 | 8.44 |
| 5.45 | 4.46 | 10.97 |
| 4.39 | 3.97 | 7.56 |
| 4.30 | 4.01 | 7.69 |
| 5.92 | 3.37 | 9.06 |
| 4.87 | 5.71 | 10.02 |
| 3.86 | 5.33 | 9.13 |
| 5.03 | 5.59 | 11.69 |
| 5.06 | 5.89 | 9.34 |
| 5.51 | 3.85 | 7.69 |
| 5.91 | 5.89 | 12.75 |
| 2.18 | 4.80 | 7.63 |
| 4.47 | 5.73 | 11.33 |
| 6.19 | 6.54 | 12.78 |
| 6.81 | 5.35 | 12.01 |
| 4.16 | 4.43 | 7.76 |
| 4.93 | 3.71 | 8.53 |
| 5.73 | 4.92 | 11.42 |
| 5.78 | 7.29 | 14.37 |

```
>> R_ii=[1 0.2 ; 0.2 1]
R_ii =
>> R_ii=[1 0.2 ; 0.2 1]
R_ii =
```

```
\[
1.0000 \quad 0.2000
\]
\[
0.2000 \quad 1.0000
\]
>> R_iy=[0.6 ; 0.8]
R_iy =
\[
0.6000
\]
\[
0.8000
\]
>> R_yi=[[0.6 0.8]
R_yi =
\[
0.6000 \quad 0.8000
\]
>> R_ii_inverse=inv(R_ii)
R_ii_inverse =
\[
1.0417-0.2083
\]
\[
-0.2083 \quad 1.0417
\]
>> B_i=R_ii_inverse*R_iy
B_i =
\[
0.4583
\]
\[
0.7083
\]
\[
\gg R 2=R \_y i * B \_i
\]
R2 =

For demonstration purposes only!

MATLAB
The Language of Technical Computing


Copyright 1984-1999 The MathWorks, Inc.


For each case, the score is decomposed into additive components:
\[
Y_{i}=Y_{i}^{\prime}+e_{i}
\]

Over cases, variance summarises how much the scores differ from each other:
\[
\begin{gathered}
\operatorname{Var}(Y)=\operatorname{Var}\left(Y^{\prime}\right)+\operatorname{Var}(e) \\
S S_{\text {actual }}=S S_{\text {regression }}+S S_{\text {residual }}
\end{gathered}
\]

\section*{Major questions answered by multiple regression}

Question 1: Is there an overall relationship between the two predictors and the criterion?

Question 2: Is there a relationship between each individual predictor and the criterion? What is the relative importance of each predictor?

\section*{Regression}

\section*{Variables Entered/Removed \({ }^{\text {b }}\)}
\begin{tabular}{|l|l|l|l|}
\hline Model & \begin{tabular}{c} 
Variables \\
Entered
\end{tabular} & \begin{tabular}{c} 
Variables \\
Removed
\end{tabular} & \multicolumn{1}{|c|}{ Method } \\
\hline 1 & \(\mathrm{X} 2, \mathrm{X} 1^{\mathrm{a}}\) & &. \\
\hline
\end{tabular}
a. All requested variables entered.
b. Dependent Variable: \(Y\)

\section*{Model Summary}
\begin{tabular}{|l|r|r|r|r|}
\hline Model & R & R Square & \begin{tabular}{c} 
Adjusted R \\
Square
\end{tabular} & \begin{tabular}{c} 
Std. Error of \\
the Estimate
\end{tabular} \\
\hline 1 & \(.917^{\mathrm{a}}\) & .842 & .823 & .86319 \\
\hline
\end{tabular}
a. Predictors: (Constant), X2, X1

ANOVA \({ }^{b}\)
\begin{tabular}{|ll|r|r|r|r|r|}
\hline Model & & \begin{tabular}{r} 
Sum of \\
Squares
\end{tabular} & df & Mean Square & F & Sig. \\
\hline 1 & Regression & 67.333 & 2 & 33.667 & 45.184 & \(.000^{\text {a }}\) \\
& Residual & 12.667 & 17 & .745 & & \\
& Total & 80.000 & 19 & & & \\
\hline
\end{tabular}
a. Predictors: (Constant), X2, X1
b. Dependent Variable: \(Y\)

Coefficients \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Model}} & \multicolumn{2}{|l|}{Unstandardized Coefficients} & \multirow[t]{2}{*}{Standardized Coefficients Beta} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} \\
\hline & & B & Std. Error & & & \\
\hline 1 & (Constant) & -1.667 & 1.261 & & -1.322 & . 204 \\
\hline & X1 & . 917 & . 197 & . 458 & 4.653 & . 000 \\
\hline & X2 & 1.417 & . 197 & . 708 & 7.191 & . 000 \\
\hline
\end{tabular}
a. Dependent Variable: \(Y\)

If you assert from a strong correlation between \(A\) and \(B\) that A causes B, the critic can usually rebut forcefully by proposing some variable \(C\) as the underlying causal agent.
... or the cause and effect may be in the reverse direction.


Children with pet dogs are more well behaved than children without pet dogs.

One might conclude that the responsibility of caring for an animal has a maturing influence on the child.

However, in an equally plausible, reverse interpretation of cause and effect: the association could come about because bad kids are not allowed to have dogs.
- Maybe smokers are on average more tense than non-smokers, and it's tension that disposes one toward getting cancer.
- Maybe smokers tend to drink a lot of coffee when smoking, and it's coffee that causes cancer.
THANK YOU FOR SMOKING
- Maybe it's just that men happen to smoke more than women, and men also happen to be more vulnerable to lung cancer.

\section*{The Case of the Third Variable}

- Coffee
- Gender

Many of these can be rebutted by showing that controlling for them doesn't eliminate the relationship between smoking and cancer.

For example, gender is a totally insufficient explanatory variable: Cancer rates are substantially higher for smokers than non-smokers, within both male and female populations.

\section*{The Case of the Third Variable}

\section*{A better strategy is to spell out the details of the proposed causal mechanism, and then test the consequences...}

Mechanism: Tobacco smoke contains substances that are toxic to human tissue when deposited by contact. The more contact, the more toxicity.

Now what are some empirical implications of such a mechanism?
1. The longer the person has smoked cigarettes, the greater the likelihood of cancer.
2. The more cigarettes a person smokes over a given period, the greater the likelihood of cancer.
3. People who stop smoking have lower cancer rates than those who keep smoking.
4. Smokers' cancer tend to occur in the lungs, and to be of a particular type.
5. Smokers have elevated rates of other respiratory diseases.
6. People who smoke cigars or pipes (where smoke isn't inhaled) have abnormally high rates of lip cancer.
7. Smokers of filter-tipped cigarettes have somewhat lower cancer rates than do other cigarette smokers.
8. Non-smokers who live with smokers have elevated cancer rates (presumably by passive exposure to smoke).

\section*{The Case of the Third Variable}

All of these implications have moderate to strong empirical support and were established correlationally (by comparing cancer rates in different population subgroups).

Yet the case is extremely persuasive because it's so coherent. Furthermore, no additional explanatory mechanism seems required, as there are no anomalous results to be explained. If smokers were found to have four times the rate of nearsightedness, then this could create a nagging bit of incoherence, and keep the search open to new ideas.

A tight bundle of strong, plausible correlational results can be causally compelling. We can call this rebuttal strategy the method of signatures.


Phillips (1977) claimed a systematic connection between the dates of widely publicised suicides, and the number of motor vehicle accidents within the 7 day periods following these particular dates.

> Mechanism: Publicised suicides encourage people with suicidal inclinations to take self-destructive action, one form of which is to deliberately crash a car.

But we should be especially suspicious of correlations between variables over time, because all kinds of events that have nothing to do with each other can co-occur in yearly, monthly, or weekly synchrony:
- Leap years
- Elections
- Betting on sport


Motor vehicle accidents

Third Variable
- Certain days of the week have more suicides?
- Holiday weekends?
- Any other national/international crisis (e.g., war, terrorism, stock market crash) may result in mass stress, worse driving, and more suicides.


\section*{Burden of Proof}

\section*{Using a tennis metaphor, the toughest critics wouldn't even acknowledge that the ball was in their court.}

If they saw only an allegation that publicised suicides were systematically followed by traffic accidents, they would call the researcher's shot out of bounds, and not respond until the opponent produced a better serve.

The investigator would be better off presenting a signature - a bundle of evidence consistent with the hypothesis, and inconsistent with other explanations.

For example, Phillips (1986) found that suicides that received heavier publicity were followed by more automobile fatalities and fatal traffic accidents tended to be confined to cases with a lone driver.

These results begin to fill in a signature characterising a genuine link.

\section*{Important concepts so far...}
- The importance of linear composites in multivariate analysis
- a linear composite is a weighted 'average' of the variables
- forming a linear composite reduces many variables to one
- Variances (and sums of squares) can be partitioned

\section*{Important concepts so far...}
- Correlation is the basis for multivariate methods.
- One view of data analysis is that we are trying to model our data by using linear composites
- Residuals give information on the lack of fit between model and data```

