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Linear Composites

A variable created by combining 
several existing variables.

• each existing variable is given a weight.

• each variable is multiplied by its weight.

• weighted variables are added together to 

form a new variable.

• different weights will produce different linear 

composites.

• Example: Grade Point Average
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Length of Right Ear

Length of Head

Height

Composite
Number of

Arrests
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Fluctuating Asymmetry (FA)
Composite = FA

“Results indicated that normally cycling (non-pill using) women 

near the peak fertility of their cycle tended to prefer the scent of 
shirts worn by symmetrical men.”
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Fluctuating Asymmetry (FA)
Composite = FA

“Results indicated that normally cycling (non-pill using) women 

near the peak fertility of their cycle tended to prefer the scent of 
shirts worn by symmetrical men.”

“Women with partners possessing low FA and their partners 

reported significantly more copulatory female orgasms than 
were reported by women with partners possessing high FA and 

their partners.”

“...there is a real, common, causal link between bodily 

asymmetry and lowered IQ.”

“Breast asymmetry is likely to be a predictor of, rather than the 

effect of breast cancer.”

“Subjects who had few or no sperm in their ejaculates tended to 

have high FA.”

“We found the [Beck Depression Index, BDI] was positively 

related to fluctuating asymmetry in men but not women”

“We conclude that symmetry in traits such as nostrils and ears 

indicates good running ability. It may therefore be useful in 
predicting the future potential of young athletes.”
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C =
∑

wiYi = w1Y1 + w2Y2 + · · · + wpYp

Y1 Y2, , etc. are scores on existing variables
w2w1, , etc. are weights for each variable

Y1 = 178.4 Y2 = 28.1 Y3 = 7.3
w1 = 1 w2 = 2 w3 = −1

C = (1× 178.4) + (2× 28.1) + (−1× 7.3)
C = 227.3 Supervariable = Stature
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Person
Aspect 1 Aspect 2 Aspect 3

1 178.4 28.1 7.3

2 167.0 24.7 6.7

3 170.2 27.6 5.8

4 187.9 29.3 8.5

5 175.2 30.9 6.2

Y3Y2Y1

227.3 307.9

209.8 291.3

219.6 291.1

237.8 325.8

230.9 294.8

C1 C2

(1, 2,−1) (2,−2, 1)
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Linear composites are used to convert 

multivariate relationships into bivariate 

relationships.

For example, start with a multivariate relationship:

Y ← X1, X2, X3

X1, X2, X3 ⇒ C1

Create a linear composite:

resulting in a bivariate relationship:

Y ← C1
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Properties of linear composites

• In data analysis, linear composites need 
to have specific properties.

• Weights are calculated mathematically to 
produce a linear composite with the right 
properties.

• Different multivariate methods use linear 
composites with different properties.
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Linear Composites in Discriminant Analysis

Discriminant Analysis looks for a relationship between a 
categorical variable and a set of variables:

Xcat ← Y1, Y2, Y3

Pick some weights: w1, w2, w3

C1 = w1Y1 + w2Y2 + w3Y3

Create a linear composite:

Xcat ← C1

Resulting in a t-test or F-test:
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Hairy

Bald

Hair Density
(2 Levels)

Xcat

Entry
GPA

Y1

Gene 
Quality

Y2

Hand
Span

Y3←

←
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6 2 10

4 3 9

4 4 11

7 2 11

5 2 10

5.2 2.6 10.2

7 3 8

5 3 7

4 4 9

8 2 8

5 2 5

5.8 2.8 7.4

GPA

Gene 

Quality

Hand

Span

Mean

Mean

t-value -0.64 -0.37 3.61

By doing three t-tests (one for each 

variable), the three variables may be 

correlated.

So the interpretations of the t-tests 

are not independent (i.e., we aren!t 

properly assessing the effect of GPA 

and gene quality independently 

because GPA and gene quality may, 

in fact, be correlated.)

Another approach is to combine the 

three variables into a composite 

variable and perform a t-test on this 

composite variable.

But how do we combine the scores?

C1

C2

C3

w3w2w1

1 1 1

1 2 -1

1 1 -2*These weights are arbitrary in this example. 

Later, we!ll cover how to find optimal weights.
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6 2 10

4 3 9

4 4 11

7 2 11

5 2 10

5.2 2.6 10.2

7 3 8

5 3 7

4 4 9

8 2 8

5 2 5

5.8 2.8 7.4

GPA

Gene 

Quality

Hand

Span

18 0 -12

16 1 -11

19 1 -14

20 0 -13

17 -1 -13

18 0.2 -12.6

18 5 -6

15 4 -6

17 3 -10

18 4 -6

12 4 -3

16 4 -6.2

C1 C2 C3

(1, 1, 1) (1, 2,−1) (1, 1,−2)

Mean

Mean

t-value -0.64 -0.37 3.61 1.49 -7.76 5.23

The goal here is to find the linear 

composite such that the t-value for 

the differences between the groups 

is as large as possible. The weights 

give the "relative importance! of the 

variables. The optimum weights 

depend essentially on the pattern of 

correlations among the variables.
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Hairy

Bald

Not Quite Bald

With more than two groups, a t-value 

is no longer appropriate. Instead, an 

F-value is the appropriate index of 

between-group differences. The goal 

now would be to find the linear 

composite such that the F-value for 

the difference between groups is as 

large as possible.

16



Ycont ← X1, X2, X3

Linear Composites in Multiple Regression

Multiple Regression looks for a relationship between a 
continuous variable and a set of variables:

C1 = a1X1 + a2X2 + a3X3

Create a linear composite:

Ycont ← C1

Resulting in a correlation:

Pick some weights: a1, a2, a3
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X1

Entry
GPA

X2

Time to Run
5 kilometres

X3

Daily Caffeine
Intake

Final Honours
Grade

Y

←

←

18



87.3 6.9 19.0 476.5

72.4 6.4 43.4 663.3

56.1 5.2 28.6 383.9

66.2 6.1 41.0 546.8

53.0 6.0 45.7 422.0

61.9 6.9 38.8 473.0

66.2 6.3 36.1 494.3

Final 

Honours 

Grade

Mean

Entry 

GPA

Time to 

Run

5 km

Daily 

Caffeine

Intake

0.39 -0.59 0.46r

By computing three correlation 

coefficients for each predictor and the 

criterion, the three predictors may be 

correlated.

So the interpretations of the simple 

correlations are not independent.

Another approach is to combine the 

three predictors into a composite and 

perform a correlation with the 

composite variable and the criterion.

But how do we combine the scores?

a1 a2 a3

C1

C2

C3

4 2 3

-4 2 3

1 1 1
*Again, these weights are arbitrary. Notice that 

we!re using different symbols to indicate that 

across different multivariate methods, different 

notation systems are traditionally used.
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87.3 6.9 19.0 476.5

72.4 6.4 43.4 663.3

56.1 5.2 28.6 383.9

66.2 6.1 41.0 546.8

53.0 6.0 45.7 422.0

61.9 6.9 38.8 473.0

66.2 6.3 36.1 494.3

Final 

Honours 

Grade

Mean

Entry 

GPA

Time to 

Run

5 km

Daily 

Caffeine

Intake

0.39 -0.59 0.46r 0.41 0.4 0.38

1495.1 1439.7 502.4

2102.5 2051.1 713.2

1229.4 1188.1 417.6

1746.9 1697.8 593.9

1381.4 1333.4 473.7

1524.3 1469.0 518.7

1579.9 1529.9 536.6

C1 C2 C3

(4, 2, 3) (−4, 2, 3) (1, 1, 1)

The goal here is to find the linear 

composite such that the correlation with 

the criterion is as large as possible. The 

weights give the "relative importance! of 

the variables. The optimum weights 

depend essentially on the pattern of 

correlations among the variables.
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Linear Composites in Factor Analysis

Factor Analysis looks for a single variable that summaries 
multiple variables, without losing too much information 
(variance).

Pick some weights: a1, a2, a3

V1, V2, V3

Create a linear composite:

C1 = a1V1 + a2V2 + a3V3

Resulting in a single summary variable: C1

has a Variance that captures the "information!.C1

21



Measures that "define! success...

Typing
Speed

V1

Emotional
Stability

V2

Chess
Experience

V3

...but how do we know whether we have a "good! measure?

One criterion for a "good! variable is that is serves to distinguish between cases.

Good Not so good
22



2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience By computing the variance for each 

measure, the three measures may be 

correlated.

So the interpretations of the 

measures are not independent.

Another approach is to combine the 

three measures into a composite and 

compute the variance of the 

composite variable.

But how do we combine the scores?

a1 a2 a3

C1

C2

C3

1 1 -1

1 -1 1

1 1 1*Note that the variance of the linear composite 

can get large if we change the magnitude of 

the weights. So the weights are constrained so 

that their sums of squares are equal.
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2 4 5

1 7 2

9 0 5

6 2 4

2 6 3

11.5 8.2 1.7

Typing

Speed

Variance

Emotional

Stability
Chess

Experience

1 3 11

6 -4 10

4 14 14

4 8 12

5 -1 11

3.5 51.5 2.3

C1 C2 C3

(1, 1,−1) (1,−1, 1) (1, 1, 1)

The goal here is to find the linear 

composite such that the scatter (spread) 

of the scores is a large as possible. That 

is, the linear composite has the largest 

possible variance. This gives the "most 

important factor!. The optimum weights 

depend essentially on the pattern of 

correlations among the variables.
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The "trick! used to handle multiple variables is to "add! 
them up to form one variable (the linear composite) 
and then to perform the familiar univariate analyses.

In data analysis, linear composites are created with 
specific properties in order to maximise something:

• in discriminant analysis, create linear composites to 

maximise group differences (or a t-value or an F-value).

• in multiple regression, create linear composites to 

maximise a correlation.

• in factor analysis, create linear composites to maximise a 

variance.
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1. Explain how linear composites are used in multiple regression. Could simple 

correlations between the criterion and the predictors give the same information as 

using a linear composite?

2. Why is variance an important concept?

3. Explain why separate univariate (bivariate) analyses are not appropriate for 

handling multivariate data.

4. Why is the linear composite formed to maximise something?  Why not just have 

arbitrary combinations of the measured variables?

5. Using the body measurement example above (e.g., 178.4, 28.1,..., 6.2) apply the 

weights used in the factor analysis example to see which of the three linear 

composites best maximised the variance.

Questions
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Multiple Regression:

An Overview

Major themes in multiple regression:

• Data = Model + Residual

# The model is specified by the weights for the 

linear combination of variables.

• Sums of squares and variances can be partitioned.

• Estimating the model for the data.

• How well does the model fit the data?

# Statistical testing

• Can we trust the model?

27



Motivational Example
Segrin & Nabi (2002)

What!s the relationship between watching 
television, holding idealistic expectations 
about marriage, and intentions to marry?

28



Person
overall tv 

viewing

romantic tv 

viewing

idealistic 

marriage 

expectation

intention to 

marry
Age Gender

1 2.56 4.75 3.95 4.5 18 F

2 4.61 2.34 2.87 3.01 22 M

285 1.41 1.05 1.53 1.25 44 M

...
...

...
...

...
...

...

N=285 never-married University students.

Intentions to 

Marry

Y ←

← Television

Viewing

X1

Holding idealistic 

expectations about marriage

X2

Results from regression and path analyses indicate that, although overall television 

viewing has a negative association with idealistic marriage expectations, viewing of 

romantic genre programming (e.g., romantic comedies, soap operas) was positively 

associated with idealistic expectations about marriage. Further, a strong and positive 

association between these expectations and marital intentions was evidenced.
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Y ↔ X

Bivariate Multivariate

Simple Linear Regression

Y ← X

Independent Groups

t-test

Y ← X

Two variable Correlation

Two Predictor

Multiple Regression

Many Predictor

Multiple Regression

Y ← X1, X2 Y ← X1, X2 . . . Xq
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Correlation

A correlation (r) represents the degree 

of a linear relationship between two 

variables, ranging from –1 to +1.

It forms the basis for all other 

multivariate methods in this course.
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V1 V2
a low correlation

r = .3
9% overlapping 

variance

V1 V2
r = .8

a moderate correlation

64% overlapping 

variance

32



4.61 9.22

4.65 9.29

5.12 10.25

5.28 10.56

5.86 11.73

6.42 12.84

4.56 9.12

6.54 13.07

4.39 8.78

3.63 7.26

5.16 10.32

5.68 11.37

4.77 9.54

5.49 10.98

3.91 7.82

5.45 10.90

3.34 6.68

4.00 8.01

3.91 7.82

7.22 14.45

X Y

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
6

7

8

9

10

11

12

13

14

15

 

 

Data

Y

X

Y ← X
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3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
6

7

8

9

10

11

12

13

14

15

 

 

Data

Model

4.61 9.22

4.65 9.29

5.12 10.25

5.28 10.56

5.86 11.73

6.42 12.84

4.56 9.12

6.54 13.07

4.39 8.78

3.63 7.26

5.16 10.32

5.68 11.37

4.77 9.54

5.49 10.98

3.91 7.82

5.45 10.90

3.34 6.68

4.00 8.01

3.91 7.82

7.22 14.45

X Y

Y

X

Y ← X

Y = 0 + 2X

R2 = 1

Y = 0 + 2(4) = 8
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5.53 11.82

6.46 9.81

5.24 11.87

4.78 8.03

4.52 8.16

2.68 8.91

4.13 8.22

4.36 9.58

6.30 11.02

5.78 11.26

5.66 10.34

3.82 9.48

5.65 10.55

6.01 9.27

5.49 9.81

6.16 13.90

5.24 14.17

3.74 6.64

4.81 10.78

3.64 6.40

X Y

2.5 3 3.5 4 4.5 5 5.5 6 6.5
6

7

8

9

10

11

12

13

14

15

 

 

Data

Y

X

Y ← X
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6

7

8

9

10

11

12

13

14
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Data

2.5 3 3.5 4 4.5 5 5.5 6 6.5
6

7

8

9

10

11

12

13

14

15

 

 

Data

   Model

5.53 11.82

6.46 9.81

5.24 11.87

4.78 8.03

4.52 8.16

2.68 8.91

4.13 8.22

4.36 9.58

6.30 11.02

5.78 11.26

5.66 10.34

3.82 9.48

5.65 10.55

6.01 9.27

5.49 9.81

6.16 13.90

5.24 14.17

3.74 6.64

4.81 10.78

3.64 6.40

X Y

Y

X

Y ← X

R2 = .36

Y = 4 + 1.2X

Y = 4 + 1.2(3) = 7.6

error

error

+e
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2

3

4

5

6

7

3

4

5

6

7

8

7

8

9

10

11

12

13

14

15

 

X1

X2

 

Y
4.10 5.06 9.81

5.34 4.09 8.44

5.45 4.46 10.97

4.39 3.97 7.56

4.30 4.01 7.69

5.92 3.37 9.06

4.87 5.71 10.02

3.86 5.33 9.13

5.03 5.59 11.69

5.06 5.89 9.34

5.51 3.85 7.69

5.91 5.89 12.75

2.18 4.80 7.63

4.47 5.73 11.33

6.19 6.54 12.78

6.81 5.35 12.01

4.16 4.43 7.76

4.93 3.71 8.53

5.73 4.92 11.42

5.78 7.29 14.37

X1 X2 YY ← X1, X2

Y = −1.67 + .92(X1) + 1.42(X2)
R2 = .84

Y = −1.67 + .92(4) + 1.42(6) = 10.5
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Yi = a + bXi + ei

The notion of modelling the data

Y ← X

Yi = Y ′
i + ei

In general:

DATA = MODEL + RESIDUAL 

Actual Score = Predicted from Model + Error

Actual Score = Predicted Score + Residual

Actual Score = Regression + Residual

38



Yi = a + b1X1i + b2X2i + ei

The notion of modelling the data

Yi = Y ′
i + ei

Actual Score = Predicted from Model + Error

Actual Score = Predicted Score + Residual

Actual Score = Regression + Residual

In general:

DATA = MODEL + RESIDUAL 

Y ← X1, X2

39



The general situation

Y = X1, X2 . . . Xp + e

Y = Y ′ + e

Y ′ is a linear composite and 
represents the model of the data

DATA = MODEL + RESIDUAL 

40



2

3

4

5

6

7

3

4

5

6

7

8

7

8

9

10

11

12

13

14

15

 

X1

X2

 

Y
4.10 5.06 9.81

5.34 4.09 8.44

5.45 4.46 10.97

4.39 3.97 7.56

4.30 4.01 7.69

5.92 3.37 9.06

4.87 5.71 10.02

3.86 5.33 9.13

5.03 5.59 11.69

5.06 5.89 9.34

5.51 3.85 7.69

5.91 5.89 12.75

2.18 4.80 7.63

4.47 5.73 11.33

6.19 6.54 12.78

6.81 5.35 12.01

4.16 4.43 7.76

4.93 3.71 8.53

5.73 4.92 11.42

5.78 7.29 14.37

X1 X2 YY ← X1, X2

Y = −1.67 + .92(X1) + 1.42(X2)
R2 = .84

Y = −1.67 + .92(4) + 1.42(6) = 10.5

Y Y ′

These best fitting regression coefficients produce 
a prediction equation for which squared 
differences between      and      are at a minimum.

Because the squared error of prediction                   are minimised, this 

solution is called a least-squares solution.
(Y − Y ′)2

41



4.10 5.06 9.81 9.26 0.54 0.30 -0.19 0.04 -0.74 0.55

5.34 4.09 8.44 9.02 -0.58 0.33 -1.56 2.42 -0.98 0.96

5.45 4.46 10.97 9.65 1.32 1.74 0.97 0.95 -0.35 0.12

4.39 3.97 7.56 7.99 -0.43 0.19 -2.44 5.97 -2.01 4.04

4.30 4.01 7.69 7.96 -0.26 0.07 -2.31 5.31 -2.04 4.18

5.92 3.37 9.06 8.54 0.52 0.27 -0.94 0.89 -1.46 2.13

4.87 5.71 10.02 10.88 -0.86 0.74 0.02 0.00 0.88 0.78

3.86 5.33 9.13 9.42 -0.29 0.08 -0.87 0.76 -0.58 0.34

5.03 5.59 11.69 10.86 0.83 0.69 1.69 2.87 0.86 0.74

5.06 5.89 9.34 11.31 -1.97 3.88 -0.66 0.43 1.31 1.73

5.51 3.85 7.69 8.83 -1.14 1.29 -2.31 5.32 -1.17 1.37

5.91 5.89 12.75 12.10 0.65 0.42 2.75 7.55 2.10 4.41

2.18 4.80 7.63 7.13 0.50 0.25 -2.37 5.61 -2.87 8.21

4.47 5.73 11.33 10.56 0.77 0.60 1.33 1.77 0.56 0.31

6.19 6.54 12.78 13.28 -0.50 0.25 2.78 7.73 3.28 10.73

6.81 5.35 12.01 12.16 -0.15 0.02 2.01 4.03 2.16 4.67

4.16 4.43 7.76 8.43 -0.66 0.44 -2.24 5.01 -1.57 2.48

4.93 3.71 8.53 8.11 0.42 0.17 -1.47 2.17 -1.89 3.58

5.73 4.92 11.42 10.55 0.88 0.77 1.42 2.03 0.55 0.30

5.78 7.29 14.37 13.96 0.41 0.17 4.37 19.13 3.96 15.71

100.00 100.00 200.00 200.00 0.00 12.67 0.00 80.00 0.00 67.33

5.00 5.00 10.00 10.00 0.00 0.63 0.00 4.00 0.00 3.37

(Y ′ − Y )2Y ′ − Y(Y − Y )2Y − Y(Y − Y ′)2Y − Y ′Y ′YX2X1

∑

MEAN

SSY

SSreg SSres

SSY =
∑

(Y − Y )2

SSreg =
∑

(Y ′ − Y )2 SSres =
∑

(Y − Y ′)2

80

67.33 12.67

R2 =
SSreg

SSY
=

67.33
80

= .84
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R2 =
[

.6 .8
] [

.458

.708

]

Ryi

Rii Riy

4.10 5.06 9.81

5.34 4.09 8.44

5.45 4.46 10.97

4.39 3.97 7.56

4.30 4.01 7.69

5.92 3.37 9.06

4.87 5.71 10.02

3.86 5.33 9.13

5.03 5.59 11.69

5.06 5.89 9.34

5.51 3.85 7.69

5.91 5.89 12.75

2.18 4.80 7.63

4.47 5.73 11.33

6.19 6.54 12.78

6.81 5.35 12.01

4.16 4.43 7.76

4.93 3.71 8.53

5.73 4.92 11.42

5.78 7.29 14.37

X1 X2 Y

1 0.2 0.6

0.2 1 0.8

0.6 0.8 1

X1

X2

Y

X1 X2 Y

Bi = R−1
ii Riy

Rii =
[

1 .2
.2 1

]
R−1

ii =
[

1.042 −0.208
−0.208 1.042

]

Bi =
[

1.042 −0.208
−0.208 1.042

] [
.6
.8

]
=

[
.458
.708

]

R2 = RyiBi

R2 = 0.84
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>> R_ii=[1 0.2 ; 0.2 1]

R_ii =

    1.0000    0.2000

    0.2000    1.0000

>> R_iy=[0.6 ; 0.8]

R_iy =

    0.6000

    0.8000

>> R_yi=[0.6 0.8]

R_yi =

    0.6000    0.8000

>> R_ii_inverse=inv(R_ii)

R_ii_inverse =

    1.0417   -0.2083

   -0.2083    1.0417

>> B_i=R_ii_inverse*R_iy

B_i =

    0.4583

    0.7083

>> R2=R_yi*B_i

R2 =

    0.8417

For demonstration 

purposes only!
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X1 X2

Y

Variance of X1 X2Variance of 

Variance of Y
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For each case, the score is decomposed 

into additive components:

Yi = Y ′
i + ei

Over cases, variance summarises how 

much the scores differ from each other:

V ar(Y ) = V ar(Y ′) + V ar(e)
SSactual = SSregression + SSresidual
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Major questions answered by 

multiple regression

Question 1: Is there an overall relationship 
between the two predictors and the criterion?

Question 2: Is there a relationship between 
each individual predictor and the criterion? 
What is the relative importance of each 
predictor? 
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Regression

Variables Entered/Removedb

X2, X1a . Enter

Model

1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: Yb. 

Model Summary

.917a .842 .823 .86319

Model

1

R R Square
Adjusted R

Square
Std. Error of
the Estimate

Predictors: (Constant), X2, X1a. 

ANOVAb

67.333 2 33.667 45.184 .000a

12.667 17 .745

80.000 19

Regression

Residual

Total

Model

1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), X2, X1a. 

Dependent Variable: Yb. 

Coe!cientsa

-1.667 1.261 -1.322 .204

.917 .197 .458 4.653 .000

1.417 .197 .708 7.191 .000

(Constant)

X1

X2

Model

1

B Std. Error

Unstandardized Coe!cients

Beta

Standardized
Coe!cients

t Sig.

Dependent Variable: Ya. 

Page 1
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=

If you assert from a strong correlation between A and B 
that A causes B, the critic can usually rebut forcefully by 
proposing some variable C as the underlying causal agent.

... or the cause and effect may be in the reverse direction.

Children with pet dogs are more well behaved than children 

without pet dogs.

One might conclude that the responsibility of caring for an 

animal has a maturing influence on the child.

However, in an equally plausible, reverse interpretation of 

cause and effect: the association could come about because 

bad kids are not allowed to have dogs.
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• Maybe smokers are on average more tense than 

non-smokers, and it!s tension that disposes one 

toward getting cancer.

• Maybe smokers tend to drink a lot of coffee when 

smoking, and it!s coffee that causes cancer.

• Maybe it!s just that men happen to smoke more than 

women, and men also happen to be more vulnerable 

to lung cancer.
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Smoking Lung Cancer

Third Variable

• Stress

• Coffee

• Gender

The Case of the Third Variable

Many of these can be rebutted by showing that controlling 
for them doesn!t eliminate the relationship between 
smoking and cancer.

For example, gender is a totally insufficient explanatory 

variable: Cancer rates are substantially higher for smokers 

than non-smokers, within both male and female populations.

But even with the motivation and resources 

to meet each criticism, this process would 

be foiled by variables for which no good 

data were available (e.g., nervous tension).
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The Case of the Third Variable
A better strategy is to spell out the details of the proposed 
causal mechanism, and then test the consequences...

Mechanism: Tobacco smoke contains substances that are toxic to human 

tissue when deposited by contact. The more contact, the more toxicity.

Now what are some empirical implications of such a mechanism?

1. The longer the person has smoked cigarettes, the greater the likelihood of cancer.

2. The more cigarettes a person smokes over a given period, the greater the 

likelihood of cancer.

3. People who stop smoking have lower cancer rates than those who keep smoking.

4. Smokers! cancer tend to occur in the lungs, and to be of a particular type.

5. Smokers have elevated rates of other respiratory diseases.

6. People who smoke cigars or pipes (where smoke isn!t inhaled) have abnormally 

high rates of lip cancer.

7. Smokers of filter-tipped cigarettes have somewhat lower cancer rates than do 

other cigarette smokers.

8. Non-smokers who live with smokers have elevated cancer rates (presumably by 

passive exposure to smoke).
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The Case of the Third Variable

All of these implications have moderate to strong empirical 
support and were established correlationally (by comparing 
cancer rates in different population subgroups).

Yet the case is extremely persuasive because it!s so 
coherent. Furthermore, no additional explanatory 
mechanism seems required, as there are no anomalous 
results to be explained. If smokers were found to have four 
times the rate of nearsightedness, then this could create a 
nagging bit of incoherence, and keep the search open to 
new ideas.

A tight bundle of strong, plausible correlational results can 
be causally compelling. We can call this rebuttal strategy 
the method of signatures. 
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Phillips (1977) claimed a systematic connection between 
the dates of widely publicised suicides, and the number of 
motor vehicle accidents within the 7 day periods following 
these particular dates.

Mechanism: Publicised suicides encourage people with suicidal 

inclinations to take self-destructive action, one form of which is to 

deliberately crash a car.
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But we should be especially suspicious of correlations 
between variables over time, because all kinds of events 
that have nothing to do with each other can co-occur in 
yearly, monthly, or weekly synchrony:

• Leap years

• Elections

• Betting on sport

Publicised 

suicides

Motor vehicle

accidents

Third Variable

• Certain days of the week have more suicides?

• Holiday weekends?

• Any other national/international crisis (e.g., war, 

terrorism, stock market crash) may result in 

mass stress, worse driving, and more suicides.
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Burden of Proof

Using a tennis metaphor, the 
toughest critics wouldn!t 
even acknowledge that the 
ball was in their court.

If they saw only an allegation that publicised suicides were systematically 

followed by traffic accidents, they would call the researcher!s shot out of bounds, 

and not respond until the opponent produced a better serve.

The investigator would be better off presenting a signature – a bundle of evidence 

consistent with the hypothesis, and inconsistent with other explanations.

For example, Phillips (1986) found that suicides that received heavier publicity 

were followed by more automobile fatalities and fatal traffic accidents tended to 

be confined to cases with a lone driver.

These results begin to fill in a signature characterising a genuine link.
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Important concepts so far...

• The importance of linear composites 

in multivariate analysis

# a linear composite is a weighted "average! of 
the variables

# forming a linear composite reduces many 
variables to one

• Variances (and sums of squares) 

can be partitioned
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Important concepts so far...

• Correlation is the basis for 

multivariate methods. 

• One view of data analysis is that we 

are trying to model our data by using 

linear composites

# Residuals give information on the lack of fit 
between model and data
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