Welcome to PSYC4050:

Psychological Research Methodology IV

Michelle
 Michelle

Philippe

Course Coordinator

Dr Jason Tangen	jtangen@psy.uq.edu.au

Tutors

Philippe Lacherez	lacher@psy.uq.edu.au
Brenda Ocampo	b.ocampo@psy.uq.edu.au
Michelle Engels	mengels@psy.uq.edu.au

Office hours by appointment, before, during, and after lectures and tutorials.

February 17, 2008 - February 24, 2008

If you prefer to use Facebook rather than Blackboard for discussion, then join the UQ PSYC4050 2008 group: http://uqedu.facebook.com/group.php?gid $=8254622939$

You will be able to use Sign-on through mySI-net http://www.sinet.uq.edu.au on Wednesday, 27 February at 7 am to sign up for your tutorial session.
© 1997-2004 Blackboard Inc. All Rights Reserved. U.S. Patent No. 6,988,138. Additional Patents Pending.

Select All $\quad \div$ Go Items Per Page $25 \div$ Go Display Show All $\quad \div$ Tags Show All Tags \div Go

E®E00\%	
Search *	
	Q
Applications	edit
[園 Photos	
1- Groups	
31 Events	
[日] Marketplace	
F) Movies	
D iLike	
- more	

Profile edit Friends \mathbf{v} Networks \boldsymbol{v} Inbox

UQ PSYC4050 2008

Global

This is an open group. Anyone can join and invite others to join.

Admins

- Jason Tangen (creator)

Posted Items	Post	
Post a link:	http://	
Discussion Board		

Sign-on

Wednesday, 27 February (tomorrow) at 7am

Class Group	Building / Room	Day / Time
L	24-S304	TUE 10:00 AM - 11:50 AM
P1	39A-226	TUE 12:00 PM - 1:50 PM
P2	31A-205	TUE 12:00 PM - 1:50 PM
P3	31A-205	TUE 2:00 PM - 3:50 PM
P4		T15 4:00 PM-5.50 PM
P5	35-116	TUE 4:00 PM - 5:50 PM
P6	39A-227	WED 10:00 AM - 11:50 AM
P7	31A-205	WED 10:00 AM - 11:50 AM
P8	39A-227	WED 12:00 PM - 1:50 PM

Brenda
Philippe
Michelle
Philippe
Brenda
Philippe
Michelle
Philippe

Handouts

1. "Electronic" Course Profile
2. Matrix Booklet
3. Quiz 1 (Take home; due next week; 2\%)

Administrative Details

1. Assessment

Assessment Task	Due Date	Weighting	Learning Objectives
Take Home Exam Review Quiz 1	26 Feb 08 10:00-4 Mar 08 10:00	2%	$1,2,3,4,5$
Small group exercise Small group exercise	26 Feb 08 10:00-18 Mar 08 10:00	5%	$1,2,3,4,5$
Essay The Multiple Regression assignment	11 Mar 08 10:00-22 Apr 08 15:00	25%	$1,2,3,4,5$
Essay The Discriminant Analysis assignment	11 Mar 08 10:00-13 May 08 10:00	20%	$1,2,3,4,5$
In Class Quiz Matrices (Quiz 2)	22 Apr 08 10:00-22 Apr 08 $11: 00$	3%	$1,2,3,4,5$
Exam - during Exam Period (Central)	Examination Period	45%	$1,2,3,4,5$

Administrative Details

2. Text Book

Tabachnick, B. G. \& Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson/Allyn \& Bacon.

Aims of the course

- to provide skills in choosing, performing and interpreting appropriate multivariate analyses
- to provide an understanding of how different multivariate methods work, and how they interrelate
- to provide the ability to critically evaluate analyses reported in the literature

A few terms...

Independent variables.

Independent variables are the conditions that your subjects are exposed to... The bits of the world that you control and manipulate while holding everything else constant.
e.g., treatment vs placebo

In non-experimental scenarios, these may represent characteristics (which you can't wiggle).
e.g., tall or short

A few terms...

Independent variables.

Independent variables are often thought of as predictor variables. This is most evident in experiments where we think of independent variables as causes.

Dependent variables.
Dependent variables are then often regarded as the effect of our manipulation.

A few terms...

Predictor

Criterion

Stimulus

Task

Response

Performance

Input
Output

A few terms...

Therefore, in many of the examples and exercises in this course, we will use these seemingly causal words for (in)dependent variables as a matter of convenience.

A few terms... Univariate Statistics

Single

dependent variable

A few terms...

Univariate Statistics

There may be more than one independent variable

A few terms...

 Univariate Statistics

 Univariate Statistics}

A few terms...

Bivariate Statistics

Two
dependent variables
Income

e.g., Pearson correlation coefficient

A few terms...

Multivariate Statistics

Multiple independent
and
dependent variables

e.g., Multiple regression

A few terms...

Orthogonality

The perfect non-association between variables
...knowing the value of one gives you no indication as to the value of the other.

Leonhard Euler

Euler diagrams

aka

"Ballantine's"

Definition of

Multivariate Analysis

- an inquiry into the structure of interrelationships amongst multiple measures
- Three main multivariate methods covered:

1. Multiple regression.
2. Discriminant analysis.
3. Factor analysis.

Embedding data analysis in the research process

- research questions and research design help determine what analyses to use
- results of analyses are interpreted with reference to the research area
- an important aim is to minimise information loss between collecting data and drawing conclusions

Aphorisms

Data do not know where they came from

Results from data analyses do not know where they came from

Matrices

Multivariate stats implies the existence of matrix data.

So it's important to become familiar with the manipulation of matrices and with the translation of formulas into and out of matrix notation.

A data matrix may be defined simply as a rectangular table of numbers on which it's legitimate to perform matrix algebra.

If a table of numbers is to be considered a matrix, it must be arranged in an orderly fashion. A necessary characteristic is that any number that is part of a matrix has a tag that specifies which row and column of the matrix it belongs to.

$$
x_{i j}
$$

is the value that belongs in row i and column j of matrix X.
j often refers to which variable is involved
i tells which person or other experimental unit is referred to

Student	Variable A	Variable B	Variable C	Variable D
1	1	500	3.2	1
2	1	420	2.5	2
3	2	650	3.9	1
4	2	550	3.5	2
5	3	480	3.3	1
6	3	600	3.2	2

In a matrix, all rows have the same number of entries, and all columns have the same number of entries. The entries may be zero, but the row and column designations can't be empty. So - to be a matrix, each entry must occupy a definite row and column, and all the entries must be filled.

Note: The requirement that a matrix is complete is the reason that missing data is a concern in multivariate stats. If a matrix has missing entries, then it's not really a matrix, and the matrix mathematics applies only approximately at best!

In a matrix, all rows have the same number of entries, and all columns have the same number of entries. The entries may be zero, but the row and column designations can't be empty. So - to be a matrix, each entry must occupy a definite row and column, and all the entries must be filled.

- The set of scores of each of 271 people on 43 tests.
- The number of responses of a subject observed under all combinations of four stimulus intensities and three durations of food deprivation.
- The per capita income, percentage of owner-occupied homes, and average number of years of education of people living in each of the cities having populations of more than 10,000 .
- The number of messages sent from individual i to individual j.

In each of these examples, the data numbers belong in a particular row and column designation (cell) and, given this designation, we know the information (the value of the variable) that belongs in it.

In the terminology of ANOVA: the row variable and the column variable must be crossed for the table to be a matrix.

In order to be able to refer to single numbers as well as matrices, appropriate terms are needed.

A single number, or variable whose value is a single number, is called a scalar.

- The number 2 is a scalar, as is the number pi or the gross national product of Australia.

A matrix having a single row or column, or any other onedimensional list of numbers, is called a vector.

- The numbers $(3,5,7)$ are a vector - so is the list of scores on a test, or all the scores of a person on several tests.

We can think of a matrix as a two-dimensional array, a vector as a one-dimensional array, and a scalar as a zero-dimensional array.

Matrices come in all sizes and degrees of rectangularity. They may have one to an infinite number of rows and columns.
They may have equal numbers of rows and columns, in which case they're referred to as square matrices.

The size of a matrix is referred to as its order, and is given as a pair of numbers, the first being the number of rows: two by three, m by $n, 1 \times 2, r \times 4,47 \times 243$, and so on.

A matrix presented as a table is usually enclosed in large brackets, as if there were danger of it escaping.

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right] \\
& \mathbf{Z}=\left[\begin{array}{cccc}
z_{11} & z_{12} & \ldots & z_{1,243} \\
z_{21} & z_{22} & \ldots & z_{2,243} \\
\vdots & \vdots & \ddots & \vdots \\
z_{47,1} & z_{47,2} & \ldots & z_{47,243}
\end{array}\right]
\end{aligned} \quad 47 \times 243
$$

Data Matrix

Student	X_{1}	$\boldsymbol{X}_{\mathbf{2}}$	\boldsymbol{X}_{3}	$\boldsymbol{X}_{\mathbf{4}}$
1	1	500	3.2	1
2	1	420	2.5	2
3	2	650	3.9	1
4	2	550	3.5	2
5	3	480	3.3	1
6	3	600	3.25	2

Variance-Covariance Matrix

	$\boldsymbol{X}_{\mathbf{2}}$	$\boldsymbol{X}_{\mathbf{3}}$	$\boldsymbol{X}_{\mathbf{4}}$
$\boldsymbol{X}_{\mathbf{2}}$	7026.66	32.80	-6.00
$\boldsymbol{X}_{\mathbf{3}}$	32.80	0.21	-0.12
$\boldsymbol{X}_{\mathbf{4}}$	-6.00	-0.12	0.30

Correlation Matrix

	X_{2}	X_{3}	\boldsymbol{X}_{4}
\boldsymbol{X}_{2}	1.00	0.85	-0.13
\boldsymbol{X}_{3}	0.85	1.00	-0.46
\boldsymbol{X}_{4}	-0.13	-0.46	1.00

Sums of Squares and Cross Products Matrix

	X_{2}	X_{3}	X_{4}
X_{2}	35133.33	164.00	-30.00
X_{3}	164.00	1.05	-0.59
X_{4}	-30.00	-0.59	1.50

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & 1 & 500 & 3.2 & 1 \\
2 & 1 & 420 & 2.5 & 2 \\
3 & 2 & 650 & 3.9 & 1 \\
4 & 2 & 550 & 3.5 & 2 \\
5 & 3 & 480 & 3.3 & 1 \\
6 & 3 & 600 & 3.25 & 2
\end{array}\right]
$$

$$
\mathbf{R}=\left[\begin{array}{ccc}
1.00 & 0.85 & -0.13 \\
0.85 & 1.00 & -0.46 \\
-0.13 & -0.46 & 1.00
\end{array}\right]
$$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
7026.66 & 32.80 & -6.00 \\
32.80 & 0.21 & -0.12 \\
-6.00 & -0.12 & 0.30
\end{array}\right]
$$

$$
\mathbf{S}=\left[\begin{array}{ccc}
35133.33 & 164.00 & -30.00 \\
164.00 & 1.05 & -0.59 \\
-30.00 & -0.59 & 1.50
\end{array}\right]
$$

The family tree is useful because it shows the links among many of the data analytic methods.

In the family tree, there are two basic 'dimensions':

1. The first has three levels and concerns the types of relationships between sets of variables, i.e. what variables and how many are related.
2. The second concerns the level of measurement of the variables.

Full Multivariate

$$
Y_{1} Y_{2} \ldots Y_{p} \leftarrow X_{1} X_{2} \ldots X_{p}
$$

The Ground

The family tree is embedded in the ground:

- Research Questions - Purposes of Research
- Raw Data Layout
- Data Summaries
- Statistical testing strategies.

