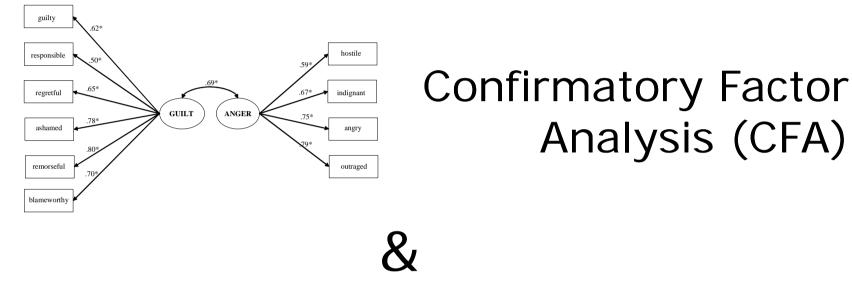
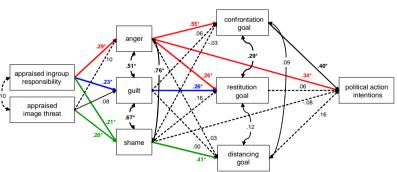
STATISTICS WORKSHOP



Structural Equation Modelling (SEM)



Aarti Iyer & Natalie Loxton • UQ • July 15, 2008

overview

PART 1: INTRODUCTION TO CONCEPTS

- 1. CFA: purpose, key concepts, when to use it
- 2. SEM: purpose, key concepts, when to use it
- 3. how CFA and SEM work
- 4. steps in CFA & SEM
 - (1) specifying a model
 - (2) evaluating model fit
 - (3) examining modification indices
 - (4) testing alternative models

\rightarrow 5 minute break

 \rightarrow 10 minute break

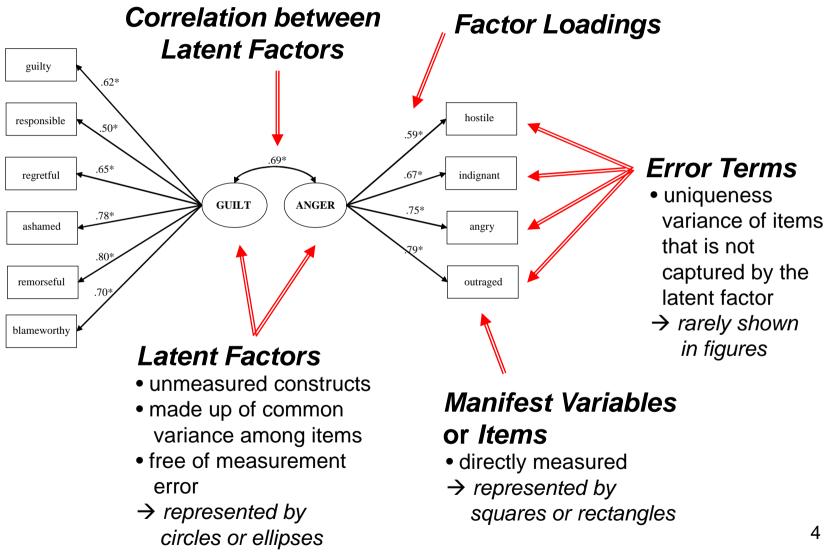
PART 2: TESTING MODELS IN AMOS

- 5. how to specify a model
- 6. how to test a CFA model
- 7. how to interpret output

purpose of CFA

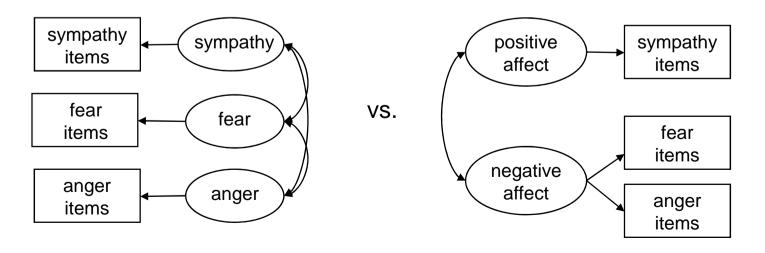
- applied to single set of variables to test hypotheses about the relative independence of subsets of variables
- similar aims to exploratory factor analysis (EFA):
 - **1.** identify underlying constructs or factors that account for associations between subsets of variables
 - **2.** identify how strongly each item is associated with one or more factors (factor loadings)
- key difference between EFA and CFA:
 - * EFA is data-driven
 - → SPSS calculates all possible factor loadings factor structure is interpreted post-hoc based on the results
 - * CFA is theory-driven
 - → program calculates only those factor loadings that we
 have hypothesized (all others are constrained to be "0")
 - \rightarrow factor structure is specified a priori

key terms in CFA



when to use CFA

- CFA involves a priori hypotheses, and so is becoming preferred over EFA (at least in social psychology)
- you might use CFA instead of EFA if you have clear hypotheses (based on previous theory and/or research) about the factors underlying a set of items
- CFA is also useful if you want to compare different factor structures that are theoretically viable



purpose of SEM

- used to test hypothesized relationships between variables
 - * assumes linear relationships
 - * assumes multivariate normality
 - * variables can be continuous or categorical (not in AMOS though)
 - * can be used with correlational or experimental data
- theory-driven approach
 - * researcher specifies order of association between variables
 - * researcher specifies which relationships should be tested (all other relationships constrained to be "0")
- comprehensive approach
 - * can subsume standard techniques of regression and ANOVA

advantages of SEM

1. can provide more accurate estimate of relationships

- * usually has two components
 - (1) measurement = items loading on to latent factors
 - (2) structural = relationships between factors
- * use of latent factors partials out items' error variance (uniqueness)

2. can test complex sets of relationships between variables

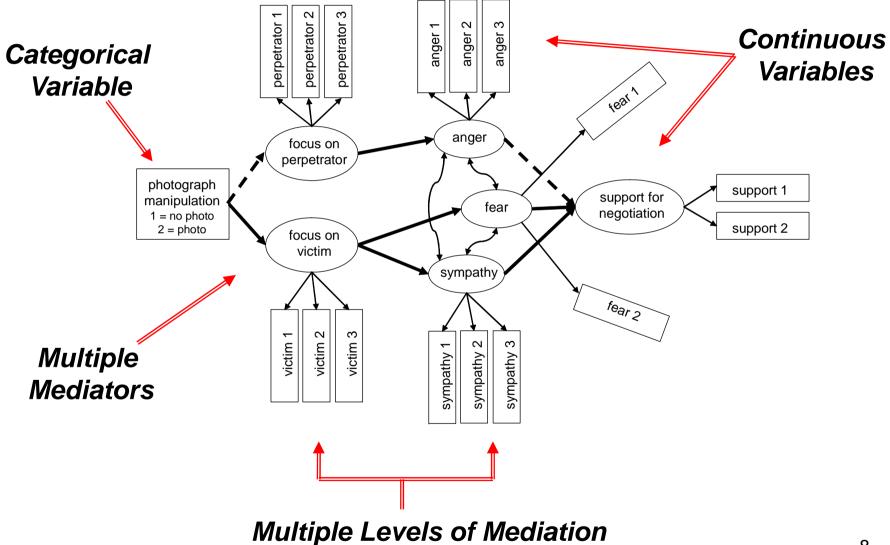
* *regression* can test:

- (a) multiple predictors of 1 outcome OR
- (b) 1 mediator between 1 predictor and 1 outcome

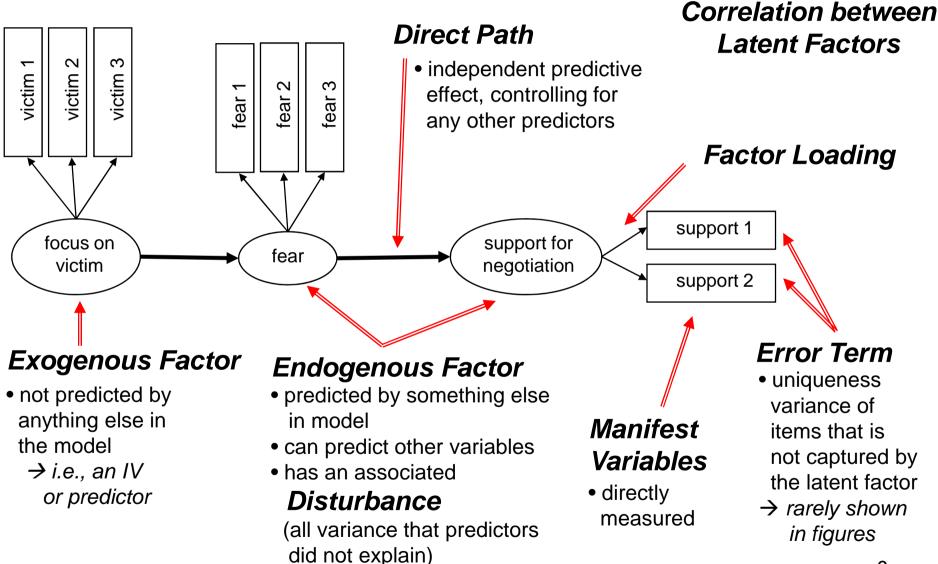
* **SEM** can test:

- (a) multiple predictors of multiple outcomes AND
- (b) multiple mediators between multiple predictors and multiple outcomes

what SEM can do

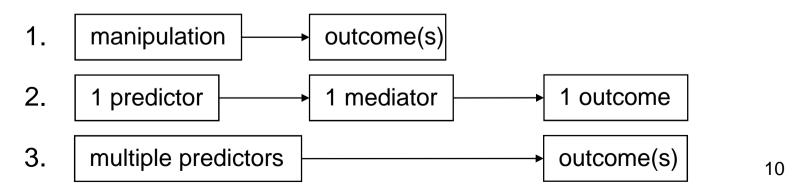


key terms in SEM



when to use SEM

- SEM can be used to...
 - * control for measurement error
 - * test a complex set of relationships (i.e., multiple mediators and/or moderators) between a large number of variables (i.e., > 4 or 5)
 - \rightarrow especially useful in longitudinal research
- SEM should not be used to...
 - * make causal claims from correlational data
 - * test very simple models that regression or ANOVA can do:



relationship between CFA & SEM

- both CFA and SEM use structural equation modeling procedures
 - * specific mathematical model
 - * theory-driven approach
- CFAs can be conducted alone focus solely on underlying factor structure
- SEM usually includes CFA (measurement part of the model)
- key difference between the two:
 - * **CFA** specifies correlational associations between factors in the model (i.e., bidirectional)
 - * **SEM** specifies "causal" associations between factors in the model (i.e., unidirectional) as well as correlations

how CFA and SEM work – (i)

- we supply two things to the software package
 - * data set
 - * model: statement of relationships between variables
- the software first calculates a variance-covariance matrix
 * observed variances and covariances among variables
- it then estimates *parameters* in the model
 - * parameters indicate the nature and size of relationships between variables in the population (correlations or direct paths)
 - * we can never know the true value of a parameter, but statistics help estimate it
 - * parameters are *fixed* (i.e., set to be "0") or *free* (to be estimated from the data)

how CFA and SEM work – (ii)

- based on the parameter estimates, the software computes an *estimated variance-covariance matrix*
- it then compares the **estimated** and **actual** variancecovariance matrices
- in the end, the software produces two things:

(a) information regarding the similarity between the estimated and actual variance-covariance matrices
 → how well the model "fits" the data

(b) parameter estimates

 \rightarrow nature of relationships between variables

******* 5 minute break ********

summary of steps in CFA/SEM

1. specify a model

- A. decide on the order of association between variables
- B. decide whether each parameter should be free or constrained
- C. consider the size of your sample

2. evaluate model fit

- A. $\chi 2$ test
- B. absolute and incremental fit indices
- C. residual indices

3. examine modification indices

A. WALD test (only in Lisrel & EQS, not AMOS)

B. Lagrange Multiplier test (in EQS; Modification Indices in AMOS)

4. test alternative models

- A. different orders of association (SEM only)
- B. nested models

A. decide on the order of association between variables

- which variables are exogenous (predictors) and which are endogenous (mediators or outcomes)?
 * if cross-sectional design, you have to decide
- how to decide the order of association:
 - * does previous theory and/or research suggest (or dictate) a particular order of association?
 - * what is your research question?
- can compare models with different orders of association...
- ... **BUT** it's hard to data-fish in SEM
- \rightarrow should have clear idea of model(s) you want to test
- \rightarrow should be able to defend your choice(s)

- B. decide whether each parameter should be free or constrained
- **constrained** = parameter set to be "0" (i.e., left out of the model)
- free = parameter allowed to be estimated (i.e., included in the model)
- need at least one constrained parameter for software to be able to estimate var-cov matrix and assess model fit
- more free parameters = model fits data better (fewer constraints = fewer places where "mis-fit" can occur)
- BUT more free parameters = less parsimony & fewer d.f.

\rightarrow have to balance these two issues

B. decide whether each parameter should be free or constrained

HOW TO DECIDE WHICH PARAMETERS TO INCLUDE:

- * which relationships do you hypothesize to be important?
- * which relationships do you have to control for?
- * which variables actually have an association? (i.e., correlation > .20)
- * which relationships do you want to show to be "0"?

→ need to consider theoretical, empirical, and rhetorical questions

C. consider the size of your sample

- issue #1: statistical stability of model
 - * if too few participants, mathematical basis of analysis is unsound, and output should not be trusted

• issue #2: statistical power

* if too few participants, may not be able to detect small effects

<u>SO...HOW MANY PARTICIPANTS DO I NEED?</u>

- * ideally, 10+ participants for every estimated parameter → includes factor loadings, direct effects, and correlations
- * if between 5 and 10 participants per estimated parameter → may compromise statistical power
- * if < 5 participants per estimated parameter
 → will compromise statistical stability of model

- model fit refers to how similar the *estimated* variancecovariance matrix is to the *actual* variance-covariance matrix
 → more similarity between the two matrices = good fit
- good fit means that the hypothesized model provides a good account for the actual relationships in the dataset
- good fit does NOT mean that the model is "correct"
 → only that it is plausible, and so cannot be rejected
- good fit does NOT mean that the model explains a large percentage of variance in the endogenous variables

FIT DEPENDS ON SPECIFIED MODEL, BUT ALSO ON D.F.

- * fewer degrees of freedom = fewer constraints = better chance of good fit
- * fewer constraints can be due to simplicity of model (i.e., fewer variables)
- * fewer constraints can be due to more estimated parameters (not fixed at "0")
- * therefore, models that are simple and/or have more free parameters have a better chance of fitting the data well
- → good fit is not necessarily impressive need to look at model complexity and the # of fixed parameters

A. χ^2 test

- tests degree of similarity between the estimated variancecovariance matrix and actual variance-covariance matrix
- really a "badness-of-fit" index: large χ² value and small *p* value means that there *is* a significant difference between estimated and actual matrices
- * rejecting the null hypothesis = model *does not* fit well
- * accepting the null hypothesis = model *does fit* well

\rightarrow want a small and non-significant χ^2 value

A. χ^2 test

DRAWBACKS OF χ^2 TEST:

* very sensitive to sample size (larger N = more chance of finding significant differences)
* assumption of multivariate normality is often violated

\rightarrow MUST report χ^2 , whether it's good or bad

 \rightarrow if χ^2 test looks bad, you have two options:

(1) can calculate the χ^2 / degrees of freedom ratio:

* divide χ^2 value by degrees of freedom

* if < 2, indicates good fit

(2) if other fit indices suggest good fit, downplay χ^2

B. absolute and incremental fit indices

- represent how much of the variance in the covariancematrix *has* been accounted for by the model
- **NOT** testing a null hypothesis
- software calculates the following indices in this category:

 - * normed fit index (NFI) * non-normed fit index (NNFI)
 - * incremental fit index (IFI) * comparative fit index (CFI)
 - * goodness-of-fit index (GFI) * adjusted goodness-of-fit index (AGFI)
- range from 0 to 1, with *higher* values indicating better fit
- general standard for good fit = .95 or higher (when N < 250) * some debate about whether this is too strict

→ should report: NFI, IFI, CFI, GFI

C. residual indices

- represent the *discrepancies* ("residuals") between estimated and observed covariances
- **NOT** testing a null hypothesis
- software calculates the following indices in this category:
 * SRMR = standardized root mean squared residual
 * RMSEA = root mean square error of approximation
- range from 0 to 1, with *lower* values indicating better fit
- general standards for acceptable fit:
 * SRMR = .08 or lower
 * RMSEA = .06 or lower

\rightarrow should report both SRMR (use and RMSEA

 \rightarrow RMSEA can be sensitive to Type 1 errors (if N < 250) and ₂₅ outliers

<u>COMPARING THE FIT OF DIFFERENT MODELS</u>

- all three sets of fit indices assess absolute, rather than relative, fit
- **NEVER** compare incremental (CFI, GFI, etc.) or residual fit indices (SRMR, RMSEA) between models

→ there is no way to test whether the difference in fit indices is statistically reliable/significant

 CAN use χ² test to compare fit of 2 models in one case: when two models are nested within each other

 \rightarrow more on this in Step 4 (testing alternative models)

what if your model has bad fit?

bad fit = model does not account for all relationships in data
 → 1 or more fixed parameter needs to be freed

• what is wrong?

- * CFA: an item should load onto other factors
- * SEM: two possible problems...
 - (1) measurement: an item should load onto other factors
 - (2) structural: a relationship between factors should be added

• what you need to do:

* add paths to model (modification indices can help – see Step 3)

• BUT remember:

- * testing repeated models increases Type 1 errors
- * post-hoc modification moves away from *a priori* approach

\rightarrow keep the model-tweaking to a minimum

→ make sure that your changes make theoretical sense ²⁷

step 3: modification indices

A. WALD test \rightarrow EQS only; not available in AMOS

- tests whether you can *drop* any paths you have estimated
 → to help improve parsimony of model and free up d.f.
- using a χ² distribution, WALD tests whether *dropping* each parameter would significantly *worsen* the overall fit of the model
 * modified model = fewer estimated parameters than original
- fewer estimated parameters = worse fit (b/c more constraints)
 - * so, the modified model (with fewer estimated parameters) will NEVER fit better than the original
 - * the best the modified model can do is to fit just as well as the original
- * significant χ^2 = dropping parameter WOULD worsen model fit \rightarrow keep parameter

* **non-sig.** χ^2 = dropping parameter WOULD NOT worsen fit \rightarrow can drop parameter

step 3: modification indices

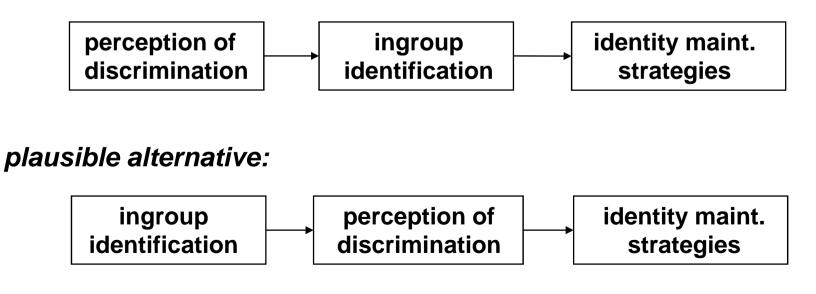
B. LaGrange Multiplier test \rightarrow "Modification Indices" in Amos

- tests whether you need to *add* any of the paths you left out
 → to better account for relationships in the data
- using a χ² distribution, LM tests whether *adding* each parameter would significantly *improve* overall model fit
 * modified model = more estimated parameters than original
- more estimated parameters = better fit (b/c fewer constraints)
 - * modified model (with more estimated parameters) will NEVER fit worse than the original
 - * the worst the modified model can do is to fit just as well as the original
- * significant χ^2 = adding the parameter WOULD improve model fit \rightarrow add parameter
- * **non-sig.** χ^2 = adding the parameter WOULD NOT sig. improve fit \rightarrow parameter not needed ²⁹

A. different orders of association

- good fit does NOT necessarily mean that your model wins
 * does not discount other models that are as plausible
- a different order of association may be theoretically viable

hypothesized:



A. different orders of association

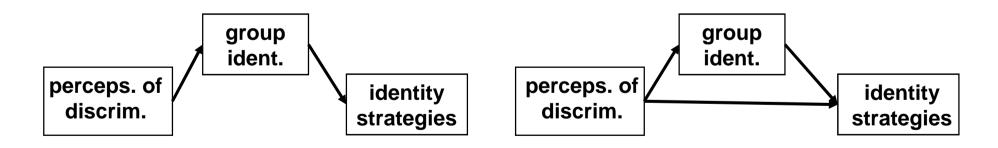
<u>WHAT TO DO</u>?

 \rightarrow test the alternative model

- * examine fit indices: does it have good absolute fit?
- * if alternative model has the same # of degrees of freedom as the original, cannot directly compare fit
- → if alternative model meets the absolute thresholds for good fit, you HAVE to say that both are viable alternatives...
- \rightarrow ...but you can still compare relative fit:
 - * model with lower AIC value is *relatively* better fitting
 * though cannot test reliability or magnitude of this difference

B. nested models

- nested model = logical subset of another model
- obtained by changing number of parameters (adding or dropping paths)
- model with fewer parameters is nested within the model with more parameters



 \rightarrow models include the same variables, but have different d.f.

B. nested models

<u>WHAT TO DO</u>?

compare χ^2 values to see which model fits better:

- 1. subtract smaller χ^2 value from larger one
- 2. subtract smaller degrees of freedom from larger one
- 3. look up corresponding *p* value in χ 2 table
- * **non-signficant** χ^2 = no difference in fit of the two models \rightarrow more parsimonious nested model fits as well as larger one \rightarrow larger model offers no advantage, so nested model is better
- * significant χ² = sig. difference in the fit of the two models
 → nested model fits significantly worse than larger model
 → larger model is better

variations of SEM

• problems that may prevent you from using SEM:

- 1. your sample is too small
- 2. the model does not fit well because of measurement component (e.g., identification items want to load onto well-being factor)
- but you may still be interested in testing a complex model
 → can use a variation of "proper" SEM

• variation #1: use measured variables instead of latent factors

- * create scales as you would for regression or ANOVA
- * specify model using measured variables, instead of building factors
- * no longer accounts for measurement error, but can still test complex m's

• variation #2: use mix of measured variables and latent factors

- * maybe only a subset of your measures are problematic
- * or, factors don't make sense for all variables (e.g., categorical)
- * can test a model with some measured variables and some factors
- * account for only some measurement error, but can still test complex m's

more advanced possibilities...

(1) compare models between groups

- does a pattern of relationships holds for different groups?
- what to do: specify the model in the two groups, constrain them to be equal, and examine the fit of this constrained model
- **good fit** = no significant differences between the groups
- bad fit = there is at least one significant difference
 → can then establish which parameter estimates are different

(2) compare two paths in the same model

- is one association/relationship stronger than another?
- what to do: constrain the relevant parameters to be equal, and test the overall fit of the model
- **good fit** = no significant differences between the parameters
- **bad fit** = there is a significant difference between the parameters

******** 10 minute break ********

Kline, R. B. (2004). *Principles and practices of structural equation modeling (2nd Ed)*. New York: Guilford.

Maruyama, G. M. (1998). *Basics of structural equation modeling*. Thousand Oaks, CA: Sage.

Bollen, K. A., & Long, J. S. (1993). *Testing structural equation models.* Thousand Oaks, CA: Sage.